CSC 405
Introduction to Computer Security

Course Introduction

About Instructor

• Dr. Peng Ning, associate professor of computer science
 – http://www.csc.ncsu.edu/faculty/ning
 – pning@ncsu.edu
 – (919)513-4457
 – Office: Room 3258, EB II
 – Office hours: Mondays and Wednesdays, 3:45pm – 4:45pm
About TA

- Yuzheng Zhou
 - yzhou3@ncsu.edu
- Office hours:
 - Tuesdays 1pm -- 3pm
 - EB II, Room 3234

Course Outline

- Basic Security Concepts
 - Threats, vulnerabilities, controls
 - Confidentiality, integrity, availability
 - Security policies, security mechanisms, assurance
- Basic Cryptography
 - Basic cryptography terms
 - Historical background
 - Secret key cryptosystems
 - Public key cryptosystems
 - Hash functions
Course Outline (Cont’d)

• Program Security
 – Malicious code
 – Program flaws
 – Defenses

• Security in Conventional Operating Systems
 – Memory, time, file, object protection
 – Identification
 – Authentication

Course Outline (Cont’d)

• Trusted Operating Systems
 – Assurance, trust
 – Design principles
 – Evaluation criteria
 – Evaluation process

• Database Management Systems Security
 – Database integrity
 – Database secrecy
 – Inference control
 – Multilevel databases
Course Outline (Cont’d)

• Network Security
 – Network threats: eavesdropping, spoofing, modification, denial of service attacks
 – Introduction to network security techniques
 – Take CSC 474 for more in-depth treatment of network security

• Management of Security
 – Security policies
 – Risk analysis
 – Physical threats and controls

Course Outline (Cont’d)

• Miscellaneous Topics
 – Legal aspects of security
 – Privacy and ethics
Course Projects

- Operating Systems Security Labs
 - Adopted from the SEED project at Syracuse
 - Use an instructional OS (Minix) on VMWare
 - One project requires Linux on VMWare
 - You are encouraged to use your own computer, but VCL access is available
 - Tentative list of projects
 - Warm up
 - Set UID lab
 - Set Random UID lab
 - Capability lab

Prerequisites

- CSC 246: Concepts and Facilities of Operating Systems for Computer Scientists
 - Basic knowledge of operating systems
 - C programming skills
Textbook and Handouts

• Required textbook

On-line Resources

• WWW page
 – http://courses.ncsu.edu/csc405/lec/001/
 – For course materials, e.g., lecture slides, homework files, papers, tools, etc.
 – Will be updated frequently. So check frequently.

• Message board
 – http://courses.ncsu.edu/csc405
 – For discussions, Q&As.
Grading

- Assignments 10%, midterm 30%, final 30%, project 30%
- The final grades are computed according to the following rules:
 - A+: >= 95%; A: >= 90% and < 95%; A-: >= 85% and < 90%;
 - B+: >= 80% and < 85%; B: >= 75% and < 80%;
 - B-: >= 70% and < 75%; C+: >= 66% and < 70%;
 - C: >= 63% and < 66%; C-: >= 60% and < 63%;
 - D+: >= 56% and < 60%; D: >= 53% and < 56%;
 - D-: >= 50% and < 53%;
 - F: < 50%.

Policies on incomplete grades and late assignments

- Homework and project deadlines will be hard.
- Late homework will be accepted with a 10% reduction in grade for each class period they are late by.
- Once a homework assignment is discussed in class, submissions will no longer be accepted.
- All assignments must be turned in before the start of class on the due date.
Policies on absences and scheduling makeup work

- You may be excused from an exam only with a university approved condition, with proof. For example, if you cannot take an exam because of a sickness, we will need a doctor's note.
- Events such as going on a business trip or attending a brother's wedding are not an acceptable excuse for not taking an exam at its scheduled time and place.
- You will have one chance to take a makeup exam if your absence is excused. There will be no makeup for homework assignments.

Academic integrity

- The university, college, and department policies against academic dishonesty will be strictly enforced.
- You may obtain copies of the NCSU Code of Student Conduct from the Office of Student Conduct, or from the following URL.
- http://www.fis.ncsu.edu/ncsulegal/41.03-codeof.htm
NC State policy on working with students with disabilities

- Reasonable accommodations will be made for students with verifiable disabilities.
 - Please schedule an appointment with the instructor.
- In order to take advantage of available accommodations, students must register with Disability Service for Students at 1900 Student Health Center, Campus Box 7509, 919-515-7653.
 - http://www.ncsu.edu/provost/offices/affirm_action/dss/
- For more information on NC State’s policy on working with students with disabilities, please see
 - http://www.ncsu.edu/provost/hat/current/appendix/appendix_k.html

Check the website for details!
Information Security Problems

• Public, private, and government networks have been penetrated by unauthorized users and rogue programs
• Increased volume of security breaches attributed Computer Emergency Response Team (CERT) reports a tremendous increase in cracking incidents
• Insider attacks
Information Security Concerns

- Distributed Denial of Service (DDOS) attacks
- Worm attacks (e.g., code red)
- Monitoring and capture of network traffic
 - User IDs, passwords, and other information are often stolen on Internet
- Exploitation of software bugs
- Unauthorized access to resources
 - Disclosure, modification, and destruction of resources
- Compromised system used as hostile attack facility
- Masquerade as authorized user or end system
- Data driven attacks
 - Importation of malicious or infected code
- E-Mail forgery

Contributing Factors

- Lack of awareness of threats and risks of information systems
 - Security measures are often not considered until an Enterprise has been penetrated by malicious users
- Wide-open network policies
 - Many Internet sites allow wide-open Internet access
- Vast majority of network traffic is unencrypted
 - Network traffic can be monitored and captured
Contributing Factors (Cont’d)

• Complexity of security management and administration
• Exploitation of software (e.g., protocol implementation) bugs
 – Example: Sendmail bugs
• Cracker skills keep improving

Threats, Vulnerabilities, and Controls

• Vulnerability
 – Weakness in the security system that might be exploited to cause loss or harm
 – Example: no authentication for data access
• Threat
 – A set of circumstances that has the potential to cause loss or harm
 – Risk: the possibility for threat to cause harm
• Control
 – A protective measure
 – An action, procedure, or technique that removes or reduces a vulnerability
Threats, Vulnerabilities, and Controls (Cont’d)

- A threat is blocked by control of a vulnerability

System Security Threats

- Unauthorized Access: Wiretapping, Illicit copying
- Interception

- Unauthorized Modification: Change of database
- Modification

- Lost Assets: Destruction of hardware
- Interruption

- Unauthorized Creation: Insertion of spurious transactions
- Fabrication
Security Goals

• Confidentiality (Secrecy)
 – Computer related assets can only be accessed by authorized parties

• Integrity
 – Computer related assets can be modified only by authorized parties

• Availability
 – Assets are accessible to authorized parties at appropriate times
 – Authorized parties cannot be denied access to the assets

• These could mean different things in different contexts

Relationship between Security Goals

The three goals can be independent, can overlap, and can even be mutually exclusive.
Commercial Example

- Secrecy — An employee should not come to know the salary of his manager
- Integrity — An employee should not be able to modify the employee's own salary
- Availability — Paychecks should be printed on time as stipulated by law

Military Example

- Secrecy — The target coordinates of a missile should not be improperly disclosed
- Integrity — The target coordinates of a missile should not be improperly modified
- Availability — When the proper command is issued the missile should fire
Vulnerabilities of Computer Systems

Computer Criminals

- Amateurs
 - Normal people who discover they have access to something valuable
 - Used to be the main source of computer crimes
- Crackers
 - People who break in for challenges, curiosity, self-satisfaction
- Career criminals
 - Computer professionals or groups engaging in computer crimes
 - Spam, phishing emails/websites, blackmail, credit card crimes, …
 - Now the main source of computer crimes
Achieving Security Goals

- Security policy — **What**?
- Security mechanism (control) — **How**?
- Security assurance — **How well**?

Security Policy

- Organizational Policy
- Automated Information System Policy
Security Mechanism

- Prevention — Access control
- Detection — Auditing and intrusion detection
- Tolerance — Practicality

Good prevention and detection both require good authentication as a foundation

Security Mechanism

- Security mechanisms implement functions that help prevent, detect, and respond to security attacks
- Prevention is more fundamental
 - Detection seeks to prevent by threat of punitive action
 - Detection requires that the audit trail be protected from alteration
- Sometime detection is the only option, e.g.,
 - Accountability in proper use of authorized privileges
 - Modification of messages in a network
- Security functions are typically made available to users as a set of security services through APIs or integrated interfaces
- Cryptography underlies (almost) all security mechanisms
Overview of Security Mechanisms (Controls)

- Encryption
- Software controls
 - E.g., OS controls
- Hardware controls
 - E.g., firewalls
- Policies and procedures
 - E.g., frequent changes of passwords
- Physical controls
 - E.g., locked doors, guards

Enhance the Effectiveness of Controls

- Awareness of problem
 - People using controls must be convinced of the need for security
- Likelihood of use
 - Controls must be efficient, easy to use, and appropriate
- Overlapping controls
 - Few controls are permanently effective
 - Judging the effectiveness of a control is an ongoing task
 - Periodic review
 - Combination of controls addressing a single vulnerability
 - Layered defense
Security Assurance

- **How well** your security mechanisms guarantee your security policy
- Everyone wants high assurance
- High assurance implies high cost
 - May not be possible
- Trade-off is needed

A Misconception: Security by Obscurity

- Security by obscurity says that if we hide the inner workings of a system it will be secure
- It is a bad idea
- Less and less applicable in the emerging world of vendor-independent open standards
- Less and less applicable in a world of widespread computer knowledge and expertise