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Computer Science

CSC 405
Introduction to Computer Security

Topic 2. Basic Cryptography (Part II)
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AES (Advanced Encryption Standard)

• January 1997: NIST called for AES contest
– Requirements

• Unclassified
• Publicly disclosed
• Available royalty-free for use worldwide
• Symmetric block cipher, for blocks of 128 bits
• Usable with key sizes of 128, 192, and 256 bits

• August 1998: 15 candidates submitted
• August 1999: 5 finalists
• Winning algorithm: Rijndael

– Inventors: Vincent Rijmen and Joan Daemen (Dutch cryptographers)
– The other four candidates are all security
– Selection based on efficiency and implementation characteristics

• December 2001: AES adopted for use in the US  government
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Overview of AES

• Has a strong mathematical foundation
• Primarily use

– Substitution, transposition, shift, XOR, and addition operations

• Use repeat rounds
– 9 rounds for keys of 128 bits
– 11 rounds for keys of 192 bits
– 13 rounds for keys of 256 bits

• Rijndael can use any key length that is the multiple of 64
– AES only recognizes 128, 192, and 256

• Rijndael is defined for blocks of 128, 192, and 256 bits
– AES specifies 128 bit blocks
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AES

• Each round
consists of
– Byte substitution
– Shift row
– Mix column
– Add subkey



CSC 405 By Dr. Peng Ning 5Computer Science

AES (Cont’d)

• Representation
– 128 bits ⇒ 16 bytes ⇒ matrix s[0,0]..s[3,3]

• Byte substitution
– Input b
– Take the multiplicative inverse of b in GF(28)

defined by P=x8+x4+x3+x+1
• Ensure each value appears exactly once

– XOR the result with 0x63 (0110 0011)
• Help break up patterns
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AES (Cont’d)

• Shift row
– Row i is rotated left (i −1) bytes

• Rijndael 256 bit blocks
– Rows 3 and 4 are shifted an extra byte

161284
151173
141062
13951

128416
731511
214106

13951
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AES (Cont’d)

• Mix column
– Each column is multiplied by a matrix
– Arithmetic operations performed in GF(28)
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• Add subkey
– XOR a variation of the key with the result so far
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AES (Cont’d)

• Subkey generation
– 128 bit key represented as four 32-bit words

• w1 w2 w3 w4
– Transformation of w1 into w1’

• w1 rotate one byte left
• Byte substitution
• XOR with a constant

– The rest of the words are produced by XOR of the original
word with w1’

• First key is the original key
• Each later variation is generated from the previous

one
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Strength of AES

• Backed up by sound mathematical foundation
• Undergone extensive cryptanalysis by

independent cryptographers
– No flaw found
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Public Key Cryptography (PKC)

• Requirements for Public-Key Algorithms
– It is computationally easy to generate a pair of

public key and private key
– It is computationally easy to generate a ciphertext

using the public key
– It is computationally easy to decrypt the ciphertext

using the private key
– It is computationally infeasible to determine the

private key from the public key
– It is computationally infeasible to recover the

message from the ciphertext and the public key
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Trapdoor One-Way Function

• Essential requirement:  Trapdoor one-way function.
• One-way function f

– One-to-one mapping
– Y=f(X): easy
– X=f−1(Y): infeasible

• Trapdoor one-way function
– One-to-one mapping
– Y=fk(X): easy if k and X are known
– X=f −1

k(Y): easy if k and Y are known
–  X=f −1

k(Y): infeasible if Y is known but k is unknown.
• Designing public-key algorithm is to find appropriate

trapdoor one-way function
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Public-Key Cryptanalysis

• Brute-force attack
– Try all possible keys

• Derivation of private key from public key
– Try to find the relationship between the public key and the

private key and compute the private key from the public
one

• Probable-message attack
– The public key is known
– Encrypt all possible messages
– Try to find a match between the ciphertext and one of the

above encrypted messages
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RSA (Rivest, Shamir, Adleman)

• The most popular one
• Support both public key encryption and digital

signature
• Assumption/theoretical basis:

– Factorization of large integers is hard
• Variable key length (usually 1024 bits)
• Variable plaintext block size

– Plaintext must be “smaller” than the key
– Ciphertext block size is the same as the key length

CSC 405 By Dr. Peng Ning 14Computer Science

Modulo Operator

• Given any positive integer n and any integer a, we
have a = qn+r, where 0≤r<n and q=a/n
– We write r = a mod n
– The remainder r is often referred to as a residue
– Example:

• 2 = 12 mod 5

• Two integer a and b are said to be congruent modulo
n if a mod n = b mod n
– We write a ≡ b mod n
– Example:

• 7 ≡ 12 mod 5
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Modulo Operator (Cont’d)

• Properties of modulo operator
– a ≡ b mod n if n|(a – b)
– (a mod n) = (b mod n) implies a ≡ b mod n.
– a ≡ b mod n implies b ≡ a mod n.
– a ≡ b mod n and b ≡ c mod n imply a ≡ c mod n.
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Modular Arithmetic

• Observation:
– The (mod n) operator maps all integers into the set of

integers{0, 1, 2, …, (n-1)}
• Modular addition

– [(a mod n) + (b mod n)] mod n = (a+b) mod n
• Modular subtraction

– [(a mod n) – (b mod n)] mod n = (a – b) mod n
• Modular multiplication

– [(a mod n) × (b mod n)] mod n = (a × b) mod n
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Totient Function

• Totient function ø(n): number of integers less
than n and relatively prime to n
– If p is prime, ø(p)=p-1
– If n=p∗q, and p, q are primes, ø(n)=(p-1)(q-1)

• Examples:
– ø(7)=____
– ø(21)=____
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Euler’s Theorem

• For relatively prime numbers a and n,
– aø(n) ≡1 mod n

• Examples
– a=3, n=10, ø(10)= ____ , 3ø(10) mod 10 = ____
– a=2, n=11, ø(11)=____, 2ø(11) mod 11=____.
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RSA Algorithm

• To generate key pair:
– Pick large primes p and q
– Let n = p*q, keep p and q to yourself!
– For public key,  choose e that is relatively prime to

ø(n) =(p-1)(q-1)
• Let pub = <e, n>

– For private key, find d that is the multiplicative
inverse of e mod ø(n), i.e., e*d = 1 mod ø(n)
• Let pri = <d, n>
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How Does RSA Work?

• Given pub = <e, n> and priv = <d, n>
– encryption: c = me mod n, m < n
– decryption: m = cd mod n
– signature: s = md mod n, m < n
– verification: m = se mod n
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An Example

• Choose p = 7 and q = 17.
• Compute n = p*q=____.
• Compute φ(n)=(p-1)(q-1)=____.
• Select e = 5, which is relatively prime to φ(n).
• Compute d = _77_such that e*d=1 mod φ(n).
• Public key: <___, ___>
• Private key: <___, ___>
• Encryption: 195 mod 119 = 66
• Decryption: 6677 mod 119 = 19.
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Why Does RSA Work?

• Given pub = <e, n> and priv = <d, n>
– n =p*q, ø(n) =(p-1)(q-1)
– e*d = 1 mod ø(n)
– xe*d = x mod n
– encryption: c = me mod n
– decryption: m = cd mod n = me*d mod n = m mod n

= m (since m < n)
– digital signature (similar)
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The Security of RSA

• Attacks against RSA
– Brute force: Try all possible private keys

• Can be defeated by using a large key space
– Mathematical attacks

• Factor n into n=p*q.
• Determine ø(n) directly: equivalent to factoring n.
• Determine d directly: at least as difficult as factoring n.

– Timing attacks
• Recover the private key according to the running time of

the decryption algorithm.
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Using PKC for Key Exchange

Alice (Pub-A, Pri-A) Bob (Pub-B, Pri-B)

Goal: Use PKC to establish a shared symmetric key

E (Pub-B, K)

Problem?
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Using PKC for Key Exchange (Cont’d)

Alice (Pub-A, Pri-A) Bob (Pub-B, Pri-B)

Sign (Pub-A, K)

Problem?
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Using PKC for Key Exchange (Cont’d)

Alice (Pub-A, Pri-A) Bob (Pub-B, Pri-B)

E (Pub-B, K, Sig (Pub-A, K))

Problem?
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Using PKC for Key Exchange (Cont’d)

Alice (Pub-A, Pri-A) Bob (Pub-B, Pri-B)

E (Pub-B, K), Sig (Pub-A, E (Pub-B, K))
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Public Key Certificates

Use known public key to
establish unknown ones
(Assume Edward’s public key
is known.)
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Hierarchy of Certificates
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Certificate Authority (CA)

• A CA is a trusted node that maintains the public keys
for all nodes

• Example
– Edward on the previous slide

• CA’s public key is well known
• A CA is involved in authenticating users’ public keys

by generating certificates


