Normalization

Anomalies
Boyce-Codd Normal Form
3rd Normal Form

Anomalies

Goal of relational schema design is to avoid anomalies and redundancy.
- Update anomaly: one occurrence of a fact is changed, but not all occurrences.
- Deletion anomaly: valid fact is lost when a tuple is deleted.

Example of Bad Design

```plaintext
Drinkers(name, addr, beersLiked, manf, favBeer)
```

<table>
<thead>
<tr>
<th>name</th>
<th>addr</th>
<th>beersLiked</th>
<th>manf</th>
<th>favBeer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Janeway</td>
<td>Voyager</td>
<td>Bud</td>
<td>A.B.</td>
<td>WickedAle</td>
</tr>
<tr>
<td>Janeway</td>
<td>???</td>
<td>WickedAle</td>
<td>Pete's</td>
<td>???</td>
</tr>
<tr>
<td>Spock</td>
<td>Enterprise</td>
<td>Bud</td>
<td>Bud</td>
<td>Bud</td>
</tr>
</tbody>
</table>

Data is redundant, because each of the ???'s can be figured out by using the FD's name -> addr favBeer and beersLiked -> manf.
This Bad Design Also Exhibits Anomalies

<table>
<thead>
<tr>
<th>name</th>
<th>addr</th>
<th>beersLiked</th>
<th>manf</th>
<th>favBeer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Janeway</td>
<td>Voyager</td>
<td>Bud</td>
<td>A.B.</td>
<td>WickedAle</td>
</tr>
<tr>
<td>Janeway</td>
<td>Voyager</td>
<td>WickedAle</td>
<td>Pete's</td>
<td>WickedAle</td>
</tr>
<tr>
<td>Spock</td>
<td>Enterprise</td>
<td>Bud</td>
<td>A.B.</td>
<td>Bud</td>
</tr>
</tbody>
</table>

- Update anomaly: if Janeway is transferred to Intrepid, will we remember to change each of her tuples?
- Deletion anomaly: If nobody likes Bud, we lose track of the fact that Anheuser-Busch manufactures Bud.

Boyce-Codd Normal Form

- We say a relation R is in BCNF if whenever $X \rightarrow A$ is a nontrivial FD that holds in R, X is a superkey.
 - Remember: nontrivial means A is not a member of set X.
 - Remember, a superkey is any superset of a key (not necessarily a proper superset).

Example

- Drinkers(name, addr, beersLiked, manf, favBeer)
- FD's: name->addr favBeer, beersLiked->manf
- Only key is {name, beersLiked}.
- In each FD, the left side is not a superkey.
- Any one of these FD's shows Drinkers is not in BCNF.
Another Example

- Beers(name, manf, manfAddr)
- FD’s: name->manf, manf->manfAddr
- Only key is {name}.
- name->manf does not violate BCNF, but manf->manfAddr does.

Decomposition into BCNF

- Given: relation R with FD’s F.
- Look among the given FD’s for a BCNF violation X->B.
 - If any FD following from F violates BCNF, then there will surely be an FD in F itself that violates BCNF.
- Compute X+.
 - Not all attributes, or else X is a superkey.

Decompose R Using X -> B

- Replace R by relations with schemas:
 - R1 = X+.
 - R2 = (R - X+) U X.
- Project given FD’s F onto the two new relations.
 - Compute the closure of F = all nontrivial FD’s that follow from F.
 - Use only those FD’s whose attributes are all in R1 or all in R2.
Example

- Drinkers(name, addr, beersLiked, manf, favBeer)
- $F = \text{name} \rightarrow \text{addr}, \text{name} \rightarrow \text{favBeer}, \text{beersLiked} \rightarrow \text{manf}$
- Pick BCNF violation $\text{name} \rightarrow \text{addr}$.
- Close the left side: $(\text{name})^+ = (\text{name}, \text{addr}, \text{favBeer})$.
- Decomposed relations:
 - Drinkers1(name, addr, favBeer)
 - Drinkers2(name, beersLiked, manf)

Example, Continued

- We are not done; we need to check Drinkers1 and Drinkers2 for BCNF.
- Projecting FD's is complex in general, easy here.
- For Drinkers1(name, addr, favBeer), relevant FD's are $\text{name} \rightarrow \text{addr}$ and $\text{name} \rightarrow \text{favBeer}$.
 - Thus, name is the only key and Drinkers1 is in BCNF.
Example, Continued

- For Drinkers2(name, beersLiked, manf),
 the only FD is beersLiked -> manf, and
 the only key is {name, beersLiked}.
 - Violation of BCNF.
- beersLiked* = (beersLiked, manf), so
 we decompose Drinkers2 into:
 - Drinkers3(beersLiked, manf)
 - Drinkers4(name, beersLiked)

Example, Concluded

- The resulting decomposition of Drinkers:
 - Drinkers1(name, addr, favBeer)
 - Drinkers3(beersLiked, manf)
 - Drinkers4(name, beersLiked)
 - Notice: Drinkers1 tells us about drinkers,
 Drinkers3 tells us about beers, and
 Drinkers4 tells us the relationship between
 drinkers and the beers they like.

Third Normal Form - Motivation

- There is one structure of FD's that
 causes trouble when we decompose.
- AB -> C and C -> B.
 - Example: A = street address, B = city,
 C = zip code.
- There are two keys, {A, B} and {A, C}.
- C -> B is a BCNF violation, so we must
 decompose into AC, BC.
We Cannot Enforce FD’s

- The problem is that if we use AC and BC as our database schema, we cannot enforce the FD AB -> C by checking FD’s in these decomposed relations.
- Example with A = street, B = city, and C = zip on the next slide.

An Unenforceable FD

<table>
<thead>
<tr>
<th>street</th>
<th>zip</th>
<th>city</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>545 Tech Sq</td>
<td>02138</td>
<td>Cambridge</td>
<td>02138</td>
</tr>
<tr>
<td>545 Tech Sq</td>
<td>02139</td>
<td>Cambridge</td>
<td>02139</td>
</tr>
</tbody>
</table>

Join tuples with equal zip codes.

<table>
<thead>
<tr>
<th>street</th>
<th>city</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>545 Tech Sq</td>
<td>Cambridge</td>
<td>02138</td>
</tr>
<tr>
<td>545 Tech Sq</td>
<td>Cambridge</td>
<td>02139</td>
</tr>
</tbody>
</table>

Although no FD’s were violated in the decomposed relations, FD street city -> zip is violated by the database as a whole.

3NF Let’s Us Avoid This Problem

- 3rd Normal Form (3NF) modifies the BCNF condition so we do not have to decompose in this problem situation.
- An attribute is prime if it is a member of any key.
- X -> A violates 3NF if and only if X is not a superkey, and also A is not prime.
Example

- In our problem situation with FD’s $AB \rightarrow C$ and $C \rightarrow B$, we have keys AB and AC.
- Thus A, B, and C are each prime.
- Although $C \rightarrow B$ violates BCNF, it does not violate 3NF.

What 3NF and BCNF Give You

- There are two important properties of a decomposition:
 - **Recovery**: it should be possible to project the original relations onto the decomposed schema, and then reconstruct the original.
 - **Dependency preservation**: it should be possible to check in the projected relations whether all the given FD’s are satisfied.

3NF and BCNF, Continued

- We can get (1) with a BCNF decomposition.
 - Explanation needs to wait for relational algebra.
- We can get both (1) and (2) with a 3NF decomposition.
- But we can't always get (1) and (2) with a BCNF decomposition.
 - street-city-zip is an example.