Cryptography

- Cryptography
 - Original meaning: The art of secret writing
 - Becoming a science that relies on mathematics (number theory, algebra)
 - Process data into unintelligible form, reversible, without data loss
 - Usually one-to-one (not compression)

Encryption/Decryption

- Plaintext: a message in its original form
- Ciphertext: a message in the transformed, unrecognized form
- Encryption: the process that transforms a plaintext into a ciphertext
- Decryption: the process that transforms a ciphertext to the corresponding plaintext
- Key: the value used to control encryption/decryption.
Cryptanalysis

- Ciphertext only:
 - Analyze only with the ciphertext
 - Example: Exhaustive search until “recognizable plaintext”
 - Smarter ways available
- Known plaintext:
 - Secret may be revealed (by spy, time), thus <ciphertext, plaintext> pair is obtained
 - Great for mono-alphabetic ciphers

Cryptanalysis (Cont’d)

- Chosen plaintext:
 - Choose text, get encrypted
 - Useful if limited set of messages
- Chosen ciphertext:
 - Choose ciphertext
 - Get feedback from decryption, etc.

Security of An Encryption Algorithm

- Unconditionally secure
 - It is impossible to decrypt the ciphertext even with infinite resources
 - One-time pad (the key is as long as the plaintext)
 \[C_i = P_i \oplus k_i \]
- Computationally secure
 - The cost of breaking the cipher exceeds the value of the encrypted information
 - The time required to break the cipher exceeds the useful lifetime of the information
Secret Keys v.s. Secret Algorithms

- Security by obscurity
 - We can achieve better security if we keep the algorithms secret
 - Hard to keep secret if used widely
 - Reverse engineering, social engineering

- Publish the algorithms
 - Security of the algorithms depends on the secrecy of the keys
 - Less unknown vulnerability if all the smart (good) people in the world are examine the algorithms

Secret Keys v.s. Secret Algorithms (Cont’d)

- Commercial world
 - Published
 - Wide review, trust

- Military
 - Keep algorithms secret
 - Avoid giving enemy good ideas
 - Military has access to the public domain knowledge anyway.

Some Trivial Codes

- Caesar cipher
 - Substitution cipher
 - Replace each letter with the one 3 letters later
 - $A \rightarrow D$, $B \rightarrow E$

- Captain Midnight Secret Decoder Rings:
 - shift variable by n: $IBM \rightarrow HAL$
 - only 26 possibilities
Some Trivial Codes (Cont’d)

• Mono-alphabetic cipher:
 – Arbitrary mapping of one letter to another
 – $26!$, approximately 4×10^{26}
 – Statistical analysis of letter frequencies

Some Trivial Codes (Cont’d)

• Hill Cipher
 – Encryption: $C = KP$
 – Decryption: $P = K^{-1}C$
 – Problem:
 • Known plaintext attack

Some Trivial Codes (cont’d)

• Poly-alphabetic Ciphers
 – A set of related mono-alphabetic substitution rules is used
 – A key determines which particular rule is chosen for a given transformation
Some Trivial Codes (Cont’d)

- All the previous codes are based on substitution
- Transposition (permutation)

<table>
<thead>
<tr>
<th>Key:</th>
<th>4</th>
<th>3</th>
<th>1</th>
<th>2</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plaintext:</td>
<td>A</td>
<td>T</td>
<td>T</td>
<td>A</td>
<td>C</td>
<td>K</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>S</td>
<td>T</td>
<td>P</td>
<td>O</td>
<td>N</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>U</td>
<td>N</td>
<td>T</td>
<td>I</td>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>O</td>
<td>A</td>
<td>M</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
</tbody>
</table>

• Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ

Types of Cryptography

- Number of keys
 - Hash functions: no key
 - Secret key cryptography: one key
 - Public key cryptography: two keys - public, private

- The way in which the plaintext is processed
 - Block cipher: divides input elements into blocks
 - Stream cipher: process one element (e.g., bit) a time

Secret Key Cryptography

plaintext ➔ encryption ➔ ciphertext ➔ decryption ➔ plaintext

key ➔ Same key ➔ key

• Same key is used for encryption and decryption
• Also known as
 - Symmetric cryptography
 - Conventional cryptography
Secret Key Cryptography (Cont’d)

- Basic technique
 - Product cipher:
 - Multiple applications of interleaved substitutions and permutations

 plaintext → $S \rightarrow P \rightarrow S \rightarrow P \rightarrow \ldots \rightarrow S \rightarrow$ ciphertext

 key

Secret Key Cryptography (Cont’d)

- Ciphertext approximately the same length as plaintext
- Examples
 - Stream Cipher: RC4
 - Block Cipher: DES, IDEA, AES

Applications of Secret Key Cryptography

- Transmitting over an insecure channel
 - Challenge: How to share the key?
- Secure Storage on insecure media
- Authentication
 - Challenge-response
 - To prove the other party knows the secret key
 - Must be secure against chosen plaintext attack
- Integrity check
 - Message Integrity Code (MIC)
 - a.k.a. Message Authentication Code (MAC)
Public Key Cryptography

- Invented/published in 1975
- A public/private key pair is used
 - Public key can be publicly known
 - Private key is kept secret by the owner of the key
- Much slower than secret key cryptography
- Also known as
 - Asymmetric cryptography

Public Key Cryptography (Cont’d)

- Another mode: digital signature
 - Only the party with the private key can create a digital signature.
 - The digital signature is verifiable by anyone who knows the public key.
 - The signer cannot deny that he/she has done so.

Applications of Public Key Cryptography

- Data transmission:
 - Alice encrypts m_a using Bob’s public key e_B. Bob decrypts m_a using his private key d_B.
- Storage:
 - Can create a safety copy: using public key of trusted person.
- Authentication:
 - No need to store secrets, only need public keys.
 - Secret key cryptography: need to share secret key for every person to communicate with.
Applications of Public Key Cryptography (Cont’d)

- Digital signatures
 - Sign hash $H(m)$ with the private key
 - Authorship
 - Integrity
 - Non-repudiation: can’t do with secret key cryptography
- Key exchange
 - Establish a common session key between two parties
 - Particularly for encrypting long messages

Hash Algorithms

- Also known as
 - Message digests
 - One-way transformations
 - One-way functions
 - Hash functions
- Length of $H(m)$ much shorter than length of m
- Usually fixed lengths: 128 or 160 bits

Hash Algorithms (Cont’d)

- Desirable properties of hash functions
 - Performance: Easy to compute $H(m)$
 - One-way property: Given $H(m)$ but not m, it’s difficult to find m
 - Weak collision free: Given $H(m)$, it’s difficult to find $m’$ such that $H(m’) = H(m)$.
 - Strong collision free: Computationally infeasible to find m_1, m_2 such that $H(m_1) = H(m_2)$
Applications of Hash Functions

• Primary application
 – Generate/verify digital signatures

Message
 \[H(m) \]
 \[\text{Sign} \]
 \[\text{Signature} \]
 \[\text{Sig}(H(m)) \]

Private key

Applications of Hash Functions (Cont’d)

• Password hashing
 – Doesn’t need to know password to verify it
 – Store \(H(\text{password}+\text{salt}) \) and salt, and compare it with the user-entered password
 – Salt makes dictionary attack more difficult

• Message integrity
 – Agree on a secret key \(k \)
 – Compute \(H(m|k) \) and send with \(m \)
 – Doesn’t require encryption algorithm, so the technology is exportable

Applications of Hash Functions (Cont’d)

• Message fingerprinting
 – Verify whether some large data structures (e.g., a program) has been modified
 – Keep a copy of the hash
 – At verification time, recompute the hash and compare

 – Hashing program and the hash values must be protected separately from the large data structures