Hash Function

- Also known as
 - Message digest
 - One-way transformation
 - One-way function
 - Hash

- Length of $H(m)$ much shorter than length of m
- Usually fixed lengths: 128 or 160 bits
Requirements for a Hash Function

- Consider a hash function H
 - **Flexibility**: Can be applied to a block of data of any size
 - **Convenience (for check)**: produce a fixed-length short output.
 - **Performance**: Easy to compute H(m)
 - **One-way property**: Given H(m) but not m, it’s difficult to find m
 - **Weak collision resistance (free)**: Given H(m), it’s difficult to find m' such that H(m') = H(m).
 - **Strong collision resistance (free)**: Computationally infeasible to find m₁, m₂ such that H(m₁) = H(m₂)

Birthday Paradox

- **Question:**
 - What is the minimum value of k such that the probability is greater than 0.5 that at least two people in a group of k people have the same birthday?
 - Ignore February 29 and assume each birthday is equally likely.
 - Probability of k people having k different birthdays:
 \[Q(365,k) = \frac{365!}{(365-k)!365^k} \]
 - Probability that at least two people have the same birthday:
 \[P(365,k) = 1 - Q(365,k) \]
 - K is about 23.
Generalization of Birthday Paradox

- Given a random variable that is an integer with uniform distribution between 1 and \(n \) and a selection of \(k \) instances of the random variables, what is the least value of \(k \) such that the probability \(P(n,k) \) is greater than 0.5 that there is at least one duplicate?
 - \(P(n,k) > 1 - e^{k(k-1)/2n} \)
 - For large \(n \) and \(k \), we have
 \[
 k = \sqrt[2]{(\ln 2)n} = 1.18\sqrt{n} = \sqrt[2]{n}
 \]
 - Intuition: How many \(k \) do we need to have a collision with \(P=0.5 \)?

- Implication
 - For a hash function \(H \) with \(2^m \) possible outputs, if we apply \(H \) to \(k=(2^m)/2=2^{m/2} \) random inputs, the probability that there is at least one duplicate is greater than 0.5.

Birthday Attack

- The source, A, is prepared to sign a message
- The opponent generates \(2^{m/2} \) variations on the message, and prepares \(2^{m/2} \) variations on the fraudulent message.
- The opponent compares the two sets of messages to find a pair of messages that produces the same hash value. The probability of success is greater than 0.5. The opponent repeats generating variations until a match is found.
- The opponent offers the valid variation to A for signature, but attaches the signature to the fraudulent variation.
How Many Bits for Hash?

- m bits, takes $2^{m/2}$ to find two with the same hash at the probability 0.5
- 64 bits, takes 2^{32} messages to search duplicate
- Need at least 128 bits

Building Hash Using Block Chaining Techniques

- Divide M into fixed-size blocks M_1, M_2, \ldots, M_n
- Compute the hash as follows
 - H_0=Initial value
 - $H_i=E_{M_i}(H_{i-1})$
 - Hash value $G=H_n$
- Weakness
 - Birthday attack (reason: hash value is too short)
 - Meet-in-the-middle attack
Building Hash Using Block Chaining Techniques (Cont’d)

- Meet-in-the-middle attack
 - Get the correct hash value G
 - Construct any message in the form Q₁, Q₂, … , Qₙ₋₂
 - Compute \(H_i = E_{Q_i}(H_{i-1}) \) for \(1 \leq i \leq (n-2) \).
 - Generate \(2^{m/2} \) random blocks; for each block X, compute \(E_X(H_{n-2}) \).
 - Generate \(2^{m/2} \) random blocks; for each block Y, compute \(D_Y(G) \).
 - With high probability there will be an X and Y such that \(E_X(H_{n-2}) = D_Y(G) \).
 - Form the message \(Q_1, Q_2, \ldots, Q_{n-2}, X, Y \). It has the hash value G.

Modern Hash Functions

- MD5
 - Previous versions (i.e., MD2, MD4) have weaknesses.
- SHA (Secure Hash Algorithm)
 - Weaknesses were found
- SHA-1
 - Broken; collisions were published in February 2005.
- RIPEMD-160
MD5: Message Digest Version 5

input Message

Output 128 bits Digest

MD5: A High-Level View

K bits
Padding (1 to 512 bits)
Message Length (K mod 2^64)

Message
100…0

Y_0

Y_1

…

Y_{L-1}

IV

128 bits

MD5

CV_1

MD5

CV_{L-1}

128-bit digest
Padding

- Given original message M, add padding bits “10*” such that resulting length is 64 bits less than a multiple of 512 bits.
- Append \((\text{original length in bits} \mod 2^{64})\), represented in 64 bits to the padded message.
- Final message is chopped 512 bits a block.
- Exercise:
 - How to add padding bits to a message that is already a multiple of 512 bits?

MD5 (Intermediate) Buffer

- Used to hold intermediate and final result of MD5.
- 128 bits
- Represented as four 32-bit words
 - \((A,B,C,D)\)
 - Initially, \(A=0x67452301, B=0xEFCDAB89, C=0x98BADCFE, D=0x10325476\)
 - Stored in little-endian format, \(A=0x01234567, B=0x89ABCDEF, C=0xFEDCBA98, D=0x76543210\).
Processing of A Single Block

512-bit message block (16 words)

128-bit vector
(Initial or from
the previous
block)

MD5

128-bit result

Primitive operations
used in MD5:

\[
\begin{align*}
F(x,y,z) &= (x \land y) \lor (\neg x \land z) \\
G(x,y,z) &= (x \land z) \lor (y \land \neg z) \\
H(x,y,z) &= x \oplus y \oplus z \\
I(x,y,z) &= y \oplus (x \land \neg z)
\end{align*}
\]

+: addition mod 2^{32}

x_{\text{ly}}: x \text{ left rotate } y \text{ bits}

Processing of A Single Block (Cont’d)

- Every message block contains 16 32-bit words:
- Every stage consists of 4 rounds over the message block, each modifying the MD5 buffer (A,B,C,D).
 - The four rounds use functions F, G, H, I, respectively.
- Each round uses one-fourth of a 64-element table T[1…64].
 - T[i] = 2^{32}\#abs(sin(i)) represented in 32 bits.
- The output of the fourth round is added to the input to the first round.
Processing of Block m_i : 4 Rounds

Logic of Each Round

- Each round consists of 16 steps
- Each step is of the form
 - $A \leftarrow B + ((A + g(B,C,D) + X[k] + T[i]) \ll s)$
 - Function g is one of F, G, H, I
 - $X[k]$ is the word in the input
 - $T[i]$ is the ith word in T
 - $\ll s$: circular left shift by s bits.
 - Followed by a word level circular right shift of one word.
Logic of Each Step

- Within a round, each of the 16 words of X[i] is used exactly
 - First round, X[i] are used in the order of I
 - Round 2, in the order of \(\rho_2(i) \), where \(\rho_2(i) = (1+5i) \text{mod} 16 \);
 - Round 3, in the order or \(\rho_3(i) \), where \(\rho_3(i) = (5+3i) \text{mod} 16 \);
 - Round 4, in the order or \(\rho_4(i) \), where \(\rho_2(i) = 7i \text{mod} 16 \);
- Each word of T[i] is used exactly once.
Security of MD5

• A recently discovered method can find a collision in a few hours
 – A few collisions were published on 8/17/04
 – Exact method has not been published yet
 – Can find many collisions for two 1024-bit messages
 – SHA-1 was also broken; collisions were published on 2/13/05.

• Birthday attack
 – 2^{64}