CSC 474 Network Security

Topic 6.2 Authentication Protocols
Authentication Handshakes

• Secure communication almost always includes an initial authentication handshake.
 – Authenticate each other
 – Establish session keys
 – *This process is not trivial; flaws in this process undermine secure communication*
Authentication with Shared Secret

- **Weaknesses**
 - Authentication is not mutual; Trudy can convince Alice that she is Bob
 - Trudy can hijack the conversation after the initial exchange
 - If the shared key is derived from a password, Trudy can mount an off-line password guessing attack
 - Trudy may compromise Bob’s database and later impersonate Alice
Authentication with Shared Secret (Cont’d)

- **A variation**
 - Requires reversible cryptography
 - Other variations are possible

- **Weaknesses**
 - All the previous weaknesses remain
 - Trudy doesn’t have to see R to mount off-line password guessing if R has certain patterns (e.g., concatenated with a timestamp)
 - Trudy sends a message to Bob, pretending to be Alice
Authentication with Public Key

- Bob’s database is less risky
- Weaknesses
 - Authentication is not mutual; Trudy can convince Alice that she is Bob
 - Trudy can hijack the conversation after the initial exchange
 - Trudy can trick Alice into signing something
 - Use different private key for authentication
Authentication with Public Key (Cont’d)

A variation

Alice \rightarrow \text{I’m Alice} \rightarrow \text{Bob}

\{R\}_\text{Alice} \rightarrow R

\text{A variation}
Mutual Authentication

Alice

I’m Alice

\(R_1 \)

\(f(K_{Alice-Bob}, R_1) \)

\(R_2 \)

\(f(K_{Alice-Bob}, R_2) \)

Bob

Optimize

Alice

I’m Alice, \(R_2 \)

\(R_1, f(K_{Alice-Bob}, R_2) \)

\(f(K_{Alice-Bob}, R_1) \)

Bob
Mutual Authentication (Cont’d)

• Reflection attack

I’m Alice, R_2

$R_1, f(K_{Alice-Bob}, R_2)$

$f(K_{Alice-Bob}, R_1)$

Trudy → Bob

Trudy → Bob

I’m Alice, R_1

$R_3, f(K_{Alice-Bob}, R_1)$
Reflection Attacks (Con’td)

• Lesson: Don’t have Alice and Bob do exactly the same thing
 – Different keys
 • Totally different keys
 • $K_{\text{Alice-Bob}} = K_{\text{Bob-Alice}} + 1$
 – Different Challenges
 – The initiator should be the first to prove its identity
 • Assumption: initiator is more likely to be the bad guy
Mutual Authentication (Cont’d)

• Password guessing

\[\text{I’m Alice, } R_2 \]

\[R_1, f(K_{\text{Alice-Bob}}, R_2) \]

\[f(K_{\text{Alice-Bob}}, R_1) \]

Alice → Bob

Bob → Alice

\[f(K_{\text{Alice-Bob}}, R_2) \]

\[f(K_{\text{Alice-Bob}}, R_1), R_2 \]

\[R_1 \]

Countermeasure
Mutual Authentication (Cont’d)

- Public keys
 - Authentication of public keys is a critical issue

I’m Alice, \(\{R_2\}_\text{Bob} \)

\(R_2, \{R_1\}_\text{Alice} \)

\(R_1 \)
Mutual Authentication (Cont’d)

- Mutual authentication with timestamps
 - Require synchronized clocks
 - Alice and Bob have to encrypt different timestamps

\begin{center}
\begin{tikzpicture}
 \node (Alice) at (0,0) {Alice};
 \node (Bob) at (4,0) {Bob};
 \draw [->] (Alice) -- node [above] {I’m Alice, $f(K_{Alice-Bob}, \text{timestamp})$} (Bob); % I'm Alice, f(K_{Alice-Bob}, timestamp)
 \draw [<-, double] (Bob) -- node [below] {$f(K_{Alice-Bob}, \text{timestamp}+1)$} (Alice); % f(K_{Alice-Bob}, timestamp+1)
\end{tikzpicture}
\end{center}
Integrity/Encryption for Data

• Communication after mutual authentication should be cryptographically protected as well
 – Require a session key established during mutual authentication
Establishment of Session Keys

- Secret key based authentication
 - Assume the following authentication happened.
 - Can we use $K_{Alice-Bob}\{R\}$ as the session key?
 - Can we use $K_{Alice-Bob}\{R+1\}$ as the session key?
 - In general, modify $K_{Alice-Bob}$ and encrypt R. Use the result as the session key.
Establishment of Session Keys (Cont’d)

• Two-way public key based authentication
 – Alice chooses a random number R, encrypts it with Bob’s public key
 • Trudy may hijack the conversation
 – Alice encrypts and signs R
 • Trudy may save all the traffic, and decrypt all the encrypted traffic when she is able to compromise Bob
 • Less severe threat
Two-Way Public Key Based Authentication (Cont’d)

• A better approach
 – Alice chooses and encrypts R_1 with Bob’s public key
 – Bob chooses and encrypts R_2 with Alice’s public key
 – Session key is $R_1 \oplus R_2$
 – Trudy will have to compromise both Alice and Bob

• An even better approach
 – Alice and Bob establish the session key with Diffie-Hellman key exchange
 – Alice and Bob signs the quantity they send
 – Trudy can’t learn anything about the session key even if she compromises both Alice and Bob
Establishment of Session Keys (Cont’d)

• One-way public key based authentication
 – It’s only necessary to authenticate the server
 • Example: SSL
 – Encrypt R with Bob’s public key
 – Diffie-Hellman key exchange
 • Bob signs the D-H public key
Mediated Authentication (With KDC)

KDC operation (in principle)

- **Some concerns**
 - Trudy may claim to be Alice and talk to KDC
 - Trudy cannot get anything useful
 - Messages encrypted by Alice may get to Bob before KDC’s message
 - It may be difficult for KDC to connect to Bob
Mediated Authentication (With KDC)

- Must be followed by a mutual authentication exchange
 - To confirm that Alice and Bob have the same key
Needham-Schroeder Protocol

- Classic protocol for authentication with KDC
 - Many others have been modeled after it (e.g., Kerberos)
- Nonce: A number that is used only once
 - Deal with replay attacks

\[\begin{align*}
N_1, & \text{Alice wants Bob} \\
& \text{Generate } K_{AB} \\
K_{Alice} & \{N_1, \text{ "Bob"}, K_{AB}, \text{ticket to Bob}\}, \\
\text{where ticket to Bob} & = K_{Bob}\{K_{AB}, \text{Alice}\} \\
\text{ticket to Bob, } K_{AB} & \{N_2\} \\
& \text{Generate } K_{AB} \\
& \text{ticket to Bob, } K_{AB} \{N_3\} \\
& \text{Generate } K_{AB} \\
& K_{AB} \{N_3-1\} \\
& \text{Generate } K_{AB} \\
& K_{AB} \{N_2-1\}
\end{align*} \]
Needham-Schroeder Protocol (Cont’d)

• A vulnerability
 – When Trudy gets a previous key used by Alice, Trudy may reuse a previous ticket issued to Bob for Alice
 – Essential reason
 • The ticket to Bob stays valid even if Alice changes her key
Expanded Needham-Schroeder Protocol

- The additional two messages assure Bob that the initiator has talked to KDC since Bob generates N_B.
Otway-Rees Protocol

- Only has five messages
- KDC checks if N_C matches in both cipher-texts
 - Make sure that Bob is really Bob

Alice

 Generate K_{AB}
 Extract N_B

KDC

 N_C, K_{Alice}\{N_A, N_C, “Alice”, “Bob”\}

Bob

 K_{Alice}\{N_A, N_C, “Alice”, “Bob”\},
 K_{Bob}\{N_B, N_C, “Alice”, “Bob”\}

 K_{Alice}\{N_A, K_{AB}\}

 K_{AB}\{anything recognizable\}