Authentication Handshakes

- Secure communication almost always includes an initial authentication handshake.
 - Authenticate each other
 - Establish session keys
 - This process is not trivial; flaws in this process undermine secure communication

Authentication with Shared Secret

- Weaknesses
 - Authentication is not mutual; Trudy can convince Alice that she is Bob
 - Trudy can hijack the conversation after the initial exchange
 - If the shared key is derived from a password, Trudy can mount an off-line password guessing attack
 - Trudy may compromise Bob’s database and later impersonate Alice
Authentication with Shared Secret (Cont’d)

- A variation
 - Requires reversible cryptography
 - Other variations are possible
- Weaknesses
 - All the previous weaknesses remain
 - Trudy doesn’t have to see R to mount off-line password guessing if R has certain patterns (e.g., concatenated with a timestamp)
 * Trudy sends a message to Bob, pretending to be Alice

Authentication with Public Key

- Bob’s database is less risky
- Weaknesses
 - Authentication is not mutual; Trudy can convince Alice that she is Bob
 - Trudy can hijack the conversation after the initial exchange
 - Trudy can trick Alice into signing something
 * Use different private key for authentication

Authentication with Public Key (Cont’d)

A variation
Mutual Authentication

Alice
- I'm Alice
- \(R_1 \)
- \(f(K_{Alice-Bob}, R_1) \)
- \(R_1 \)
- \(f(K_{Alice-Bob}, R_1) \)

Bob

Mutual Authentication (Cont’d)

- **Reflection attack**

Trudy
- I'm Alice, \(R_2 \)
- \(R_2(f(K_{Alice-Bob}, R_1)) \)

Bob

- I'm Alice, \(R_2 \)
- \(R_2(f(K_{Alice-Bob}, R_1)) \)

Reflection Attacks (Con’d)

- **Lesson:** Don’t have Alice and Bob do exactly the same thing
 - Different keys
 - Totally different keys
 - \(K_{Alice-Bob} = K_{Bob-Alice} + 1 \)
 - Different Challenges
 - The initiator should be the first to prove its identity
 - Assumption: initiator is more likely to be the bad guy
Mutual Authentication (Cont’d)

• Password guessing

\[
\text{I'm Alice, } R_2, f(K_{Alice-Bob}, R_2), \ f(K_{Alice-Bob}, R_1) \\
\text{Bob}
\]

Mutual Authentication (Cont’d)

• Public keys

 – Authentication of public keys is a critical issue

\[
\text{I'm Alice, } R_2, \{R_1\}_{Bob} \\
\text{Bob, } \{R_1\}_{Alice}, R_2 \\
\text{Alice, } R_1
\]

Mutual Authentication (Cont’d)

• Mutual authentication with timestamps

 – Require synchronized clocks
 – Alice and Bob have to encrypt different timestamps

\[
\text{I'm Alice, } f(K_{Alice-Bob}, \text{timestamp}) \\
\text{Bob, } f(K_{Alice-Bob}, \text{timestamp}+1)
\]
Integrity/Encryption for Data

- Communication after mutual authentication should be cryptographically protected as well
 - Require a session key established during mutual authentication

Establishment of Session Keys

- Secret key based authentication
 - Assume the following authentication happened.
 - Can we use $K_{Alice-Bob}(R)$ as the session key?
 - Can we use $K_{Alice-Bob}(R+1)$ as the session key?
 - In general, modify $K_{Alice-Bob}$ and encrypt R. Use the result as the session key.

```
<table>
<thead>
<tr>
<th>Alice</th>
<th>Bob</th>
</tr>
</thead>
<tbody>
<tr>
<td>I'm Alice</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
</tr>
<tr>
<td>$K_{Alice-Bob}(R)$</td>
<td></td>
</tr>
</tbody>
</table>
```

Establishment of Session Keys (Cont’d)

- Two-way public key based authentication
 - Alice chooses a random number R, encrypts it with Bob’s public key
 - Trudy may hijack the conversation
 - Alice encrypts and signs R
 - Trudy may save all the traffic, and decrypt all the encrypted traffic when she is able to compromise Bob
 - Less severe threat
Two-Way Public Key Based Authentication (Cont’d)

• A better approach
 – Alice chooses and encrypts \(R_1 \) with Bob’s public key
 – Bob chooses and encrypts \(R_2 \) with Alice’s public key
 – Session key is \(R_1 \oplus R_2 \)
 – Trudy will have to compromise both Alice and Bob

• An even better approach
 – Alice and Bob estabish the session key with Diffie-Hellman key exchange
 – Alice and Bob signs the quantity they send
 – Trudy can’t learn anything about the session key even if she compromises both Alice and Bob

Establishment of Session Keys (Cont’d)

• One-way public key based authentication
 – It’s only necessary to authenticate the server
 • Example: SSL
 – Encrypt \(R \) with Bob’s public key
 – Diffie-Hellman key exchange
 • Bob signs the D-H public key

Mediated Authentication (With KDC)

KDC operation (in principle)

- Some concerns
 – Trudy may claim to be Alice and talk to KDC
 – Trudy cannot get anything useful
 – Messages encrypted by Alice may get to Bob before KDC’s message
 – It may be difficult for KDC to connect to Bob
Mediated Authentication (With KDC)

- Must be followed by a mutual authentication exchange
 - To confirm that Alice and Bob have the same key

Needham-Schroeder Protocol

- Classic protocol for authentication with KDC
 - Many others have been modeled after it (e.g., Kerberos)
- Nonce: A number that is used only once
 - Deal with replay attacks

Needham-Schroeder Protocol (Cont’d)

- A vulnerability
 - When Trudy gets a previous key used by Alice, Trudy may reuse a previous ticket issued to Bob for Alice
 - Essential reason
 - The ticket to Bob stays valid even if Alice changes her key
Expanded Needham-Schroeder Protocol

- The additional two messages assure Bob that the initiator has talked to KDC since Bob generates N_B.

1. Alice wants to talk to Bob, $K_{ab}(N_a)$
2. Generate K_{ab}, extract N_B
3. N_C, Alice wants Bob, $K_{ab}(N_a)$
4. $K_{ab}(N_a, "Bob", K_{ab}(N_a, Alice))$
5. where $ticket_{Bob} = K_{ab}(K_{ab}(Alice, N_a), N_B)$
6. $K_{ab}(N_B, N_C)$
7. $K_{ab}(N_B, N_C)$

Otway-Rees Protocol

- Only has five messages
- KDC checks if N_C matches in both cipher-texts
 - Make sure that Bob is really Bob

2. Generate K_{ab}, Extract N_C
3. $K_{ab}(N_a, N_C, "Alice", "Bob")$
4. $N_C, K_{ab}(N_a, N_C), K_{ab}(N_B, K_{ab})$
5. $K_{ab}(N_B, N_C)$
6. $K_{ab}(N_B, N_C)$
7. $K_{ab}(anything\ recognizable)$