Outline

• IPsec Objectives
• IPsec architecture & concepts
• IPsec authentication header
• IPsec encapsulating security payload

IPsec Objectives

• Why do we need IPsec?
 – IP V4 has no authentication
 • IP spoofing
 • Payload could be changed without detection.
 – IP V4 has no confidentiality mechanism
 • Eavesdropping
 – Denial of service (DOS) attacks
 • Cannot hold the attacker accountable due to the lack of authentication.
IPsec Objectives (Cont’d)

• IP layer security mechanism for IPv4 and IPv6
 – Not all applications need to be security aware
 – Can be transparent to users
 – Provide authentication and confidentiality mechanisms.

IPsec Architecture

IPsec module 1

SPD
IKE
SAD
IPsec
SA

IPsec module 2

SPD
IKE
SA
IPsec
SAD

SPD: Security Policy Database; IKE: Internet Key Exchange; SA: Security Association; SAD: Security Association Database.

IPsec Architecture (Cont’d)

• Two Protocols (Mechanisms)
 – Authentication Header (AH)
 – Encapsulating Security Payload (ESP)
• IKE Protocol
 – Internet Key Management
IPsec Architecture (Cont’d)

• Can be implemented in
 – Host or gateway
• Can work in two Modes
 – Tunnel mode
 – Transport mode

Hosts & Gateways

• Hosts can implement IPsec to connect to:
 – Other hosts in transport or tunnel mode
 – Or Gateways in tunnel mode
• Gateways to gateways
 – Tunnel mode

Tunnel Mode

[Diagram showing the IPsec Tunnel Mode process]
Tunnel Mode (Cont’d)

- ESP applies only to the tunneled packet
- AH can be applied to portions of the outer header

Transport Mode

- ESP protects higher layer payload only
- AH can protect IP headers as well as higher layer payload
Security Association (SA)

- An association between a sender and a receiver
 - Consists of a set of security related parameters
 - E.g., sequence number, encryption key
- One way relationship
- Determine IPsec processing for senders
- Determine IPsec decoding for destination
- SAs are not fixed! Generated and customized per traffic flows

Security Parameters Index (SPI)

- A bit string assigned to an SA.
- Carried in AH and ESP headers to enable the receiving system to select the SA under which the packet will be processed.
- 32 bits
- SPI + Dest IP address + IPsec Protocol
 - Uniquely identifies each SA in SA Database (SAD)

SA Database (SAD)

- Holds parameters for each SA
 - Sequence number counter
 - Lifetime of this SA
 - AH and ESP information
 - Tunnel or transport mode
- Every host or gateway participating in IPsec has their own SA database
SA Bundle

- More than 1 SA can apply to a packet
- Example: ESP does not authenticate new IP header. How to authenticate?
 - Use SA to apply ESP w/out authentication to original packet
 - Use 2nd SA to apply AH

Security Policy Database (SPD)

- Decide
 - What traffic to protect?
 - Has incoming traffic been properly secured?
- Policy entries define which SA or SA Bundles to use on IP traffic
- Each host or gateway has their own SPD
- Index into SPD by Selector fields
 - Selectors: IP and upper-layer protocol field values.
 - Examples: Dest IP, Source IP, Transport Protocol, IPSec Protocol, Source & Dest Ports, …

SPD Entry Actions

- Discard
 - Do not let in or out
- Bypass
 - Outbound: do not apply IPSec
 - Inbound: do not expect IPSec
- Protect – will point to an SA or SA bundle
 - Outbound: apply security
 - Inbound: security must have been applied
SPD Protect Action

- If the SA does not exist...
 - Outbound processing
 - Trigger key management protocols to generate SA dynamically, or
 - Request manual specification, or
 - Other methods
 - Inbound processing
 - Drop packet

Outbound Processing

- Outbound packet (on A)
- IP Packet
 - Is it for IPsec?
 - If so, which policy entry to select?
- SPD (Policy)
- SA Database
- Determine the SA and its SPI
- IPSec processing
- SPI & IPsec Packet
- Send to B

Inbound Processing

- Inbound packet (on B)
- From A
- SPI & Packet
 - Use SPI to index the SAC
 - Was packet properly secured?
- SPD (Policy)
- Original IP Packet
Authentication Header (AH)

- Data integrity
 - Entire packet has not been tampered with
- Authentication
 - Can “trust” IP address source
 - Use MAC to authenticate
- Anti-replay feature
- Integrity check value

Integrity Check Value - ICV

- Message authentication code (MAC) calculated over
 - IP header fields that do not change or are predictable
 - IP header fields that are unpredictable are set to zero.
 - IPsec AH header with the ICV field set to zero.
 - Upper-level data
- Code may be truncated to first 96 bits

IPsec Authentication Header

![IPsec Authentication Header Diagram]
Encapsulated Security Protocol (ESP)

- Confidentiality for upper layer protocol
- Partial traffic flow confidentiality (Tunnel mode only)
- Data origin authentication and connectionless integrity (optional)

Outbound Packet Processing

- Form ESP payload
- Pad as necessary
- Encrypt result [payload, padding, pad length, next header]
- Apply authentication

Outbound Packet Processing...

- Sequence number generation
 - Increment then use
 - With anti-replay enabled, check for rollover and send only if no rollover
 - With anti-replay disabled, still needs to increment and use but no rollover checking

- ICV calculation
 - ICV includes whole ESP packet except for authentication data field.
 - Implicit padding of ‘0’ s between next header and authentication data is used to satisfy block size requirement for ICV algorithm
 - Not include the IP header.
Inbound Packet Processing

- Sequence number checking
 - Anti-replay is used only if authentication is selected
 - Sequence number should be the first ESP check on a packet upon looking up an SA
 - Duplicates are rejected!

 \[
 \text{Sliding Window size} \geq 32
 \]

Anti-replay Feature

- Optional
- Information to enforce held in SA entry
- Sequence number counter - 32 bit for outgoing IPsec packets
- Anti-replay window
 - 32-bit
 - Bit-map for detecting replayed packets
Anti-replay Sliding Window

• Window should not be advanced until the packet has been authenticated
• Without authentication, malicious packets with large sequence numbers can advance window unnecessarily
 – Valid packets would be dropped!

Inbound Packet Processing...

• Packet decryption
 – Decrypt quantity [ESP payload, padding, pad length, next header] per SA specification
 – Processing (stripping) padding per encryption algorithm; In case of default padding scheme, the padding field SHOULD be inspected
 – Reconstruct the original IP datagram
• Authentication verification (option)

ESP Processing - Header Location...

• Transport mode IPv4 and IPv6

IPv4

<table>
<thead>
<tr>
<th>Orig IP hdr</th>
<th>ESP hdr</th>
<th>TCP</th>
<th>Data</th>
<th>ESP trailer</th>
<th>ESP Auth</th>
</tr>
</thead>
</table>

IPv6

<table>
<thead>
<tr>
<th>Orig IP hdr</th>
<th>Orig ext hdr</th>
<th>ESP hdr</th>
<th>TCP</th>
<th>Data</th>
<th>ESP trailer</th>
<th>ESP Auth</th>
</tr>
</thead>
</table>
ESP Processing - Header Location...

- Tunnel mode IPv4 and IPv6

<table>
<thead>
<tr>
<th>IPv4</th>
<th></th>
<th></th>
<th>TCP</th>
<th>Data</th>
<th>ESP trailer</th>
<th>ESP Auth</th>
</tr>
</thead>
<tbody>
<tr>
<td>New IP hdr</td>
<td>ESP hdr</td>
<td>Orig IP hdr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP Data</td>
<td>ESP Auth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IPv6</th>
<th></th>
<th></th>
<th>TCP</th>
<th>Data</th>
<th>ESP trailer</th>
<th>ESP Auth</th>
</tr>
</thead>
<tbody>
<tr>
<td>New IP hdr</td>
<td>ESP hdr</td>
<td>Orig IP hdr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESP Auth</td>
<td>TCP Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>