CSC 474 Network Security

Topic 8.2 Internet Key Management

Outline

- Key Management
 - Security Principles
- Internet Key Management
 - Manual Exchange
 - SKIP
 - Oakley
 - ISAKMP
 - IKE

Key Management

- Why do we need Internet key management
 - AH and ESP require encryption and authentication keys
- Process to negotiate and establish IPsec SAs between two entities
Security Principles

• Basic security principle for session keys
 – Compromise of a session key
 • Doesn’t permit reuse of the compromised session key.
 • Doesn’t compromise future session keys and long-term keys.

Security Principles (Cont’d)

• Perfect forward secrecy (PFS)
 – Compromise of current keys (session key or long-term key) doesn’t compromise past session keys.
 – Concern for encryption keys but not for authentication keys.
 – Not really “perfect” in the same sense as perfect secrecy for one-time pad.

Internet Key Management

• Manual key management
 – Mandatory
 – Useful when IPsec developers are debugging
 – Keys exchanged offline (phone, email, etc.)
 – Set up SPI and negotiate parameters
Internet Key Management (Cont’d)

- Automatic key management
 - Two major competing proposals
 - Simple Key Management for Internet Protocols (SKIP)
 - ISAKMP/OAKLEY
 - Photuris
 - Ephemeral D-H + authentication + Cookie
 - The first to use cookie to thwart DOS attacks
 - SKEME (extension to Photuris)
 - Oakley (RFC 2412)
 - ISAKMP (RFC 2408)
 - ISAKMP/OAKLEY → IKE (RFC 2409)

A Note about IKE

- IKE v2 was introduced in RFC 4306 (December 2005)
- IKE v2 does not interoperate with IKE v1
 - Both version can unambiguously run over the same UDP port
- IKE v2 combines the contents of previously separate documents
 - ISAKMP
 - IKE v1
 - DOI
 - NAT
 - ...

Automatic Key Management

- Key establishment and management combined
 - SKIP
- Key establishment protocol
 - Oakley
 - focus on key exchange
- Key management
 - Internet Security Association & Key Management Protocol (ISAKMP)
 - Focus on SA and key management
 - Clearly separated from key exchange.
SKIP

- Idea
 - IP is connectionless in nature
 - Using security association forces a pseudo session layer underneath IP
 - Proposal: use sessionless key establishment and management
 - Pre-distributed and authenticated D-H public key
 - Packet-specific encryption keys are included in the IP packets

SKIP (Cont’d)

Two types of keys:
1. KEK
2. Packet key

Certificate repository

Bob’s certificate
Alice’s certificate

Alice —> Bob

K_p encrypted with KEK.
Payload encrypted with K_p

SKIP (Cont’d)

- KEK should be changed periodically
 - Minimize the exposure of KEK
 - Prevent the reuse of compromised packet keys
- SKIP’s approach
 - $KEK = h (K_{AB}, n)$, where h is a one-way hash function, K_{AB} is the long term key between A and B, and n is a counter.
SKIP (Cont’d)

• Limitations
 – No Perfect Forward Secrecy
 • Can be modified to provide PFS, but it will lose the
 sessionless property.
 – No concept of SA; difficult to work with the
 current IPsec architecture
• Not the standard, but remains as an alternative.

Oakley

• Oakley is a refinement of the basic Diffie-Hellman key exchange protocol.
• Why need refinement?
 – Resource clogging attack
 – Replay attack
 – Man-in-the-middle attack
 – Choice of D-H groups

Resource Clogging Attack

• Stopping requests is difficult
 – We need to provide services.
• Ignoring requests is dangerous
 – Denial of service attacks
Resource Clogging Attack (Cont’d)

• Counter measure
 – If we cannot stop bogus requests, at least we should know from where the requests are sent.
 – Cookies are used to thwart resource clogging attack
 • Thwart, not prevent

Resource Clogging Attack (Cont’d)

• Cookie
 – Each side sends a pseudo-random number, the cookie, in the initial message, which the other side acknowledges.
 – The acknowledgement must be repeated in the following messages.
 – Do not begin D-H calculation until getting acknowledgement for the other side.

Requirements for cookie generation

• The cookie must depend on the specific parties.
 – Prevent an attacker from reusing cookies.
• Impossible to forge
 – Use secret values
• Efficient
• Cookies are also used for key naming
 – Each key is uniquely identified by the initiator’s cookie and the responder’s cookie.
Replay Attack

- Counter measure
 - Use nonce

1. Cookie exchange
2. Later exchange
3. Replay
4. Busy computing

Man-In-The-Middle Attack

- Counter measure
 - Authentication
 - Depend on other mechanisms.
 - Pre-shared key.
 - Public key certificates.

Oakley Groups

- How to choose the DH groups?
 - 0 no group (placeholder or non-DH)
 - 1 MODP, 768-bit modulus
 - 2 MODP, 1024-bit modulus
 - 3 MODP, 1536-bit modulus
 - 4 EC2N over GF(2^{155})
 - 5 EC2N over GF(2^{185})
Ephemeral Diffie-Hellman

- Session key is computed on the basis of short-term DH public-private keys.
- Exchange of these short-term public keys requires authentication and integrity.
 - Digital signatures.
 - Keyed message digests.
- The only protocol known to support Perfect Forward Secrecy.

Ephemeral Diffie-Hellman

- Question: What happens if the long term key is compromised?

ISAKMP

- Oakley
 - Key exchange protocol
 - Developed to use with ISAKMP
- ISAKMP
 - Security association and key management protocol
 - Defines procedures and packet formats to establish, negotiate, modify, and delete security associations.
 - Defines payloads for security association, key exchange, etc.
ISAKMP Message

- Fixed format header
 - 64 bit initiator and responder cookies
 - Exchange type (8 bits)
 - Next payload type (8 bits)
 - Flags: encryption, commit, authentication, etc.
 - 32 bit message ID
 - Resolve multiple phase 2 SAs being negotiated simultaneously
 - Variable number of payloads
 - Each has a generic header with
 - Payload boundaries
 - Next payload type (possible none)

ISAKMP Formats

ISAKMP Phases

- Phase 1
 - Establish ISAKMP SA to protect further ISAKMP exchanges
 - Or use pre-established ISAKMP SA
 - ISAKMP SA identified by initiator cookie and responder cookie
- Phase 2
 - Negotiate security services in SA for target security protocol or application.
ISAKMP

- Disadvantage
 - Additional overhead due to 2 phases
- Advantages
 - Same ISAKMP SA can be used to negotiate phase 2 for multiple protocols
 - ISAKMP SA can be used to facilitate maintenance of SAs.
 - ISAKMP SA can simplify phase 2.

ISAKMP Domain Of Interpretation (DOI)

- DOI defines
 - Payload format
 - Exchange types
 - Naming conventions for security policies, cryptographic algorithms
- DOI for IPsec has been defined.

ISAKMP Exchange Types

- 0 none
- 1 base
- 2 identity protection
- 3 authentication only
- 4 aggressive
- 5 informational
- 6-31 reserved
- 32-239 DOI specific use
- 240-255 private use
ISAKMP Exchange Types

- Base exchange
 - reveals identities
- Identity protection exchange
 - Protects identities at cost of extra messages.
- Authentication only exchange
 - No key exchange
- Aggressive exchange
 - Reduce number of messages, but reveals identity
- Informational exchange
 - One-way transmission of information.

ISAKMP Payload Types

- 0 none
- 1 SA security association
- 2 P proposal
- 3 T transform
- 4 KE key exchange
- 5 ID identification
- 6 CERT certificate
- 7 CR certificate request
- 8 H hash
- 9 SIG signature
- 10 NONCE nonce
- 11 N notification
- 12 D delete
- 13 VID vender ID
- 14-127 reserved
- 128-255 private use
ISAKMP Payload Types

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security Association (SA)</td>
<td>Terminal of Encryption, Decryption Used to negotiate security attributes and define the SA that is to be used for the exchange of data.</td>
</tr>
<tr>
<td>Proposal (PR)</td>
<td>Proposal for ISAKMP negotiation, used to exchange negotiation information.</td>
</tr>
<tr>
<td>Translated (TL)</td>
<td>Translates the exchange of values.</td>
</tr>
<tr>
<td>Key Exchange (KE)</td>
<td>Key Exchange Data Used to exchange pre-established keys.</td>
</tr>
<tr>
<td>Certificate (C)</td>
<td>Certificate Data Certificate information.</td>
</tr>
<tr>
<td>Distinct (D)</td>
<td>Distinct Data Distinct information.</td>
</tr>
<tr>
<td>Signature (SIG)</td>
<td>Signature Data Signature information.</td>
</tr>
</tbody>
</table>

NOTES:
- *Includes SA ID in its own field.*
- *Includes SA ID in its own field.*

ISAKMP Exchanges

Basic Exchange

1. **I → R:** SA; NONCE • Begin ISAKMP-SA negotiation
2. **R → I:** SA; NONCE • Basic SA agreed upon
3. **I → R:** KE; ID; AUTH • Key generated; Initiator id verified by responder
4. **R → I:** KE; ID; AUTH • Responder id verified by initiator; key generated; SA established

Identity Protection Exchange

1. **I → R:** SA • Begin ISAKMP-SA negotiation
2. **R → I:** SA • Basic SA agreed upon
3. **I → R:** KE; NONCE • Key generated.
4. **R → I:** KE; NONCE • Key generated.
5. **I → R:** ID; AUTH • Initiator id verified by responder
6. **R → I:** ID; AUTH • Responder id verified by initiator; SA established

Red messages: Payload encrypted after ISAKMP header
ISAKMP Exchanges (Cont’d)

Authentication Only Exchange

1. \textbf{I} \rightarrow \textbf{R}: SA; NONCE
 - Begin ISAKMP-SA negotiation
2. \textbf{R} \rightarrow \textbf{I}: SA; NONCE; ID_R; AUTH
 - Basic SA agreed upon; Responder id verified by initiator
3. \textbf{I} \rightarrow \textbf{R}: ID_I; AUTH
 - Initiator id verified by responder; SA established

ISAKMP Exchanges (Cont’d)

Aggressive Exchange

1. \textbf{I} \rightarrow \textbf{R}: SA; KE; NONCE; ID_I
 - Begin ISAKMP-SA negotiation and key exchange
2. \textbf{R} \rightarrow \textbf{I}: SA; KE; NONCE; ID_R; AUTH
 - Responder identity verified by responder; Key generated; Basic SA agreed upon;
3. \textbf{I} \rightarrow \textbf{R}: AUTH
 - Initiator id verified by responder; SA established

Red messages: Payload encrypted after ISAKMP header

Informational Exchange

1. \textbf{I} \rightarrow \textbf{R}: N/D
 - Error or status notification, or deletion.

Red message: Payload encrypted after ISAKMP header
IKE Overview

- IKE = ISAKMP + part of OAKLEY + part of SKEME
 - ISAKMP determines
 - How two peers communicate
 - How these messages are constructed
 - How to secure the communication between the two peers
 - No actual key exchange
 - Oakley
 - Key exchange protocol
 - Combining these two requires a Domain of Interpretation (DOI)
 - RFC 2407

IKE Overview (Cont’d)

- A separate RFC has been published for IKE
 - RFC 2409
- Request-response protocol
 - Initiator
 - Responder
- Two phases
 - Phase 1: Establish an IKE (ISAKMP) SA
 - Essentially the ISAKMP phase 1
 - Bi-directional
 - Phase 2: Use the IKE SA to establish IPsec SAs
 - Key exchange phase
 - Directional

IKE Overview (Cont’d)

- Several Modes
 - Phase 1:
 - Main mode: identity protection
 - Aggressive mode
 - Phase 2:
 - Quick mode
 - Other modes
 - New group mode
 - Establish a new group to use in future negotiations
 - Not in phase 1 or 2.
 - Must only be used after phase 1
 - Informational exchanges
 - ISAKMP notify payload
 - ISAKMP delete payload
IPSEC Architecture Revisited

What to establish

IKE policies (How to establish the IPsec SAs)

A Clarification About PFS

- In RFC 2409:
 - When used in the memo Perfect Forward Secrecy (PFS) refers to the notion that compromise of a single key will permit access to only data protected by a single key.
 - The key used to protect transmission of data MUST NOT be used to derive any additional keys.
 - If the key used to protect transmission of data was derived from some other keying material, that material MUST NOT be used to derive any more keys.
- Is this consistent with what we discussed?

IKE Phase 1

- Four authentication methods
 - Digital signature
 - Authentication with public key encryption
 - The above method revised
 - Authentication with a pre-shared key
IKE Phase 1 (Cont’d)

- IKE Phase 1 goal:
 - Establish a shared secret SKEYID
 - With signature authentication
 - SKEYID = prf(Ni_b | Nr_b, g^{xy})
 - With public key encryption
 - SKEYID = prf(hash(Ni_b | Nr_b), CKY-I | CKY-R)
 - With pre-shared key
 - SKEYID = prf(pre-shared-key, Ni_b | Nr_b)
 - Notations:
 - prf: keyed pseudo random function prf(key, message)
 - CKY-I/CKY-R: I’s (or R’s) cookie
 - Ni_b/Nr_b: the body of I’s (or R’s) nonce

IKE Phase 1 (Cont’d)

- Three groups of keys
 - Derived key for non-ISAKMP negotiations
 - SKEYID_d = prf(SKEYID, g^{xy} | CKY-I | CKY-R | 0)
 - Authentication key
 - SKEYID_a = prf(SKEYID, SKEYID_d | g^{xy} | CKY-I | CKY-R | 1)
 - Encryption key
 - SKEYID_e = prf(SKEYID, SKEYID_a | g^{xy} | CKY-I | CKY-R | 2)

IKE Phase 1 (Cont’d)

- To authenticate the established key
 - Initiator generates
 - HASH_I = prf(SKEYID, g^{xi} | g^{xr} | CKY-I | CKY-R | SAI_b | IDi_b)
 - Responder generates
 - HASH_R = prf(SKEYID, g^{xe} | g^{xr} | CKY-R | CKY-I | SAI_b | IDr_b)
 - Authentication with digital signatures
 - HASH_I and HASH_R are signed and verified
 - Public key encryption or pre-shared key
 - HASH_I and HASH_R directly authenticate the exchange.
IKE Phase 1 Authenticated with Signatures

Main Mode

<table>
<thead>
<tr>
<th>Initiator</th>
<th>Responder</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDR, SA</td>
<td>HDR, SA</td>
</tr>
<tr>
<td>HDR, KE, Ni</td>
<td>HDR, KE, Nr</td>
</tr>
<tr>
<td>HDR*, IDii, [CERT,] SIG_I</td>
<td>HDR*, IDir, [CERT,] SIG_R</td>
</tr>
</tbody>
</table>

Aggressive Mode

<table>
<thead>
<tr>
<th>Initiator</th>
<th>Responder</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDR, SA, KE, Ni, IDii</td>
<td>HDR, SA, KE, Nr, IDir, [CERT,] SIG_R</td>
</tr>
<tr>
<td>HDR, [CERT,] SIG_I</td>
<td>HDR, [CERT,] SIG_R</td>
</tr>
</tbody>
</table>

IKE Phase 1 Authenticated with Public Key Encryption

Main Mode

<table>
<thead>
<tr>
<th>Initiator</th>
<th>Responder</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDR, SA</td>
<td>HDR, SA</td>
</tr>
<tr>
<td>HDR, KE, [HASH(1),] <IDii_b>PubKey_r, <Ni_b>PubKey_r</td>
<td>HDR, KE, <IDir_b>PubKey_i, <Nr_b>PubKey_i</td>
</tr>
<tr>
<td>HDR*, HASH_I</td>
<td>HDR*, HASH_R</td>
</tr>
</tbody>
</table>

IKE Phase 1 Authenticated with Public Key Encryption

Aggressive Mode

<table>
<thead>
<tr>
<th>Initiator</th>
<th>Responder</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDR, SA,</td>
<td></td>
</tr>
<tr>
<td>[HASH(1),] KE,</td>
<td></td>
</tr>
<tr>
<td><IDi, b>PubKey_r,</td>
<td></td>
</tr>
<tr>
<td><Ni, b>PubKey_r</td>
<td>HDR, SA, KE,</td>
</tr>
<tr>
<td><IDr, b>PubKey_i,</td>
<td></td>
</tr>
<tr>
<td><Nr, b>PubKey_i,</td>
<td></td>
</tr>
<tr>
<td>HASH_R</td>
<td></td>
</tr>
</tbody>
</table>

HDR, HASH_I

Observations

- Authenticated using public key encryption
 - No non-repudiation
 - No evidence that shows the negotiation has taken place.
 - More difficult to break
 - An attacker has to break both DH and public key encryption
 - Identity protection is provided in aggressive mode.
 - Four public key operations
 - Two public key encryptions
 - Two public key decryptions

IKE Phase 1 Authenticated with A Revised Mode of Public Key Encryption

Main Mode

<table>
<thead>
<tr>
<th>Initiator</th>
<th>Responder</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDR, SA,</td>
<td>HDR, SA,</td>
</tr>
<tr>
<td>HDR, [HASH(1),]</td>
<td></td>
</tr>
<tr>
<td><Ni, b>PubKey_r,</td>
<td></td>
</tr>
<tr>
<td><KE, b>Ke_i,</td>
<td></td>
</tr>
<tr>
<td>[<Cert-I, b>Ke_i,</td>
<td>HDR, <Nr, b>PubKey_i,</td>
</tr>
<tr>
<td><KE, b>Ke_r,</td>
<td></td>
</tr>
<tr>
<td>HDR*, HASH_I</td>
<td>HDR*, HASH_R</td>
</tr>
</tbody>
</table>
IKE Phase 1 Authenticated with A Revised Mode of Public Key Encryption

Aggressive Mode

<table>
<thead>
<tr>
<th>Initiator</th>
<th>Responder</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDR, SA, [HASH(I)]</td>
<td>HDR, SA, [HASH(R)]</td>
</tr>
<tr>
<td><Ni_b>PubKey_r, <KE_b>Ke_i, <IDii_b>Ke_i</td>
<td><Nr_b>PubKey_i, <KE_b>Ke_r, <IDir_b>Ke_r</td>
</tr>
<tr>
<td>HASH_R</td>
<td>HASH_R</td>
</tr>
</tbody>
</table>

Further Details

- Ne_i = prf(Ni_b, CKY-I)
- Ne_r = prf(Nr_b, CKY-R)

- Ke_i and Ke_r are taken from Ne_i and Ne_r, respectively.

IKE Phase 1 Authenticated with Pre-Shared Key

Main Mode

<table>
<thead>
<tr>
<th>Initiator</th>
<th>Responder</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDR, SA</td>
<td>HDR, SA</td>
</tr>
<tr>
<td>HDR, KE, Ni</td>
<td>HDR, KE, Nr</td>
</tr>
<tr>
<td>HDR*, IDii, HASH_I</td>
<td>HDR*, IDir, HASH_R</td>
</tr>
</tbody>
</table>
IKE Phase 1 Authenticated with Pre-Shared Key (Cont’d)

• What provide the authentication?
• Why does it work?

IKE Phase 1 Authenticated with Pre-Shared Key

Aggressive Mode

<table>
<thead>
<tr>
<th>Initiator</th>
<th>Responder</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDR, SA, KE, Ni, ID(i)</td>
<td>HDR, SA, KE, Nr, ID(r), HASH(_R)</td>
</tr>
<tr>
<td>HDR, HASH(_I)</td>
<td>HDR, HASH(_J)</td>
</tr>
</tbody>
</table>

IKE Phase 2 -- Quick Mode

• Not a complete exchange itself
 – Must be bound to a phase 1 exchange
• Used to derive keying materials for IPsec SAs
• Information exchanged with quick mode must be protected by the ISAKMP SA
• Essentially a SA negotiation and an exchange of nonce
 – Generate fresh key material
 – Prevent replay attack
IKE Phase 2 -- Quick Mode (Cont’d)

- Basic Quick Mode
 - Refresh the keying material derived from phase 1
- Quick Mode with optional KE payload
 - Transport additional exponentiation
 - Provide PFS

IKE Phase 2 -- Quick Mode (Cont’d)

<table>
<thead>
<tr>
<th>Initiator</th>
<th>Responder</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDR*, HASH(1), SA, Ni, [KE], [IDci, IDcr]</td>
<td>HDR*, HASH(2), SA, Ni, [KE], [IDci, IDcr]</td>
</tr>
<tr>
<td>HDR*, HASH(3)</td>
<td>HDR*, HASH(3)</td>
</tr>
</tbody>
</table>

\[
\text{HASH}(1) = \text{prf}(\text{SKEYID}_a, \text{M-ID} | \text{SA} | \text{Ni} \[| \text{KE} \] \[| \text{IDci} \] | \text{IDcr})
\]
\[
\text{HASH}(2) = \text{prf}(\text{SKEYID}_a, \text{M-ID} | \text{Ni}_b | \text{SA} | \text{Ni} \[| \text{KE} \] \[| \text{IDci} \] \[| \text{IDcr} \] | \text{IDcr})
\]
\[
\text{HASH}(3) = \text{prf}(\text{SKEYID}_a, 0 | \text{M-ID} | \text{Ni}_b | \text{Ni}_b)
\]

IKE Phase 2 -- Quick Mode (Cont’d)

If PFS is not needed, and KE payloads are not exchanged, the new keying material is defined as

\[
\text{KEYMAT} = \text{prf}(\text{SKEYID}_d, \text{protocol} | \text{SPI} | \text{Ni}_b | \text{Ni}_b)
\]

If PFS is desired, and KE payloads were exchanged, the new keying material is defined as

\[
\text{KEYMAT} = \text{prf}(\text{SKEYID}_d, g(qm)^x | \text{protocol} | \text{SPI} | \text{Ni}_b | \text{Ni}_b)
\]

where \(g(qm)^x\) is the shared secret from the ephemeral Diffie-Hellman exchange of this Quick Mode.
IKE V2

- Combines the contents of ISAKMP, IKE, DOI, NAT, legacy authentication, and remote address acquisition
 - More robust and clean than IKE
 - Initially published in RFC 4306
 - December 2005
 - Further clarified in RFC 4718
 - October 2006
 - Combined in RFC 5996
 - September 2010

IKEv2 Overview

- Performs mutual authentication between initiator and responder
- Establish an IKE SA
 - IKE_SA
- Establish IPsec SAs
 - CHILE_SAs
- All IKEv2 communications: pairs of messages
 - A request followed by a response
 - It’s the responsibility of the requester to ensure reliability
 - Greatly simplifies protocol state maintenance on end nodes

IKEv2 Overview (Cont’d)

- IKEv2 exchanges
 - IKE_SA_INIT exchange
 - IKE_AUTH exchange
 - CREATE_CHILD_SA exchange
 - INFORMATIONAL exchange
- In common cases
 - A single IKE_SA_INIT exchange
 - A single IKE_AUTH exchange
 - Any number of CREATE_CHILD_SA and INFORMATIONAL exchanges
IKE_SA_INIT Exchange

- Intended to negotiate security parameters for IKE_SA
- After the exchange, both initiator and responder can generate seed for secret keys
- All messages following the exchange are encrypted except for message headers

IKE_AUTH Exchange

- Transmit IDs, prove knowledge of the secrets corresponding to the IDs, set up the first SA for the CHILD_SA
- The recipient of a message must verify all signatures and MACs and the IDs correspond to the keys used to generate the authenticator

CREATE_CHILD_SA Exchange

- Can be initiated by either end
- Counter part of phase 2 in IKE
- Optional KE payload → PFS
Handling DoS attacks

- Recall IKE uses Cookie mechanism in phase 1
 - Two extra messages
- IKEv2
 - Do not use Cookie mechanism by default
 - A responder performs detection of possible DoS attacks
 - A large number of half-open IKE-SAs
 - When there is a DoS attack
 - The responder rejects initial IKE messages unless they have a valid Cookie
 - The responder sends an unprotected IKE message with a Cookie
 - An initiator that receives such a response can retry with the Cookie