Basic Number Theory

• We are talking about integers!
• Divisor
 – We say that $b \neq 0$ divides a if $a = mb$ for some m, denoted $b | a$. b is a divisor of a.
 – If $a | 1$, then $a = 1$ or -1.
 – If $a | b$ and $b | a$, then $a = b$ or $-b$.
 – Any $b \neq 0$ divides 0.
 – If $b | g$ and $b | h$, then $b | (mg + nh)$ for arbitrary integers m and n.
Basic Number Theory (Cont’d)

• Prime numbers
 – An integer $p > 1$ is a prime number if its only divisors are 1, -1, p, and $-p$.
 – Examples: 2, 3, 5, 7, 11, 13, 17, 19, 31,…

• Any integer $a > 1$ can be factored in a unique way as $a = p_1^{a_1}p_2^{a_2}...p_t^{a_t}$
 – where each $p_1 > p_2 > ... > p_t$ are prime numbers and where each $a_i > 0$.
 – Examples: $91 = 13 \cdot 7$, $11011 = 13 \cdot 827$.

Basic Number Theory (Cont’d)

• Another view of $a|b$:
 – Let P be the set of all prime numbers
 – Represent a as $a = \prod_{p \in P} p^{a_p}$, where $a_p \geq 0$.
 – Represent b as $b = \prod_{p \in P} p^{b_p}$, where $b_p \geq 0$.
 – $a|b$ means that $a_i \mid b_i$.
Basic Number Theory (Cont’d)

- Greatest common divisor: gcd\((a, b)\)
 - gcd\((a, b) = \max\{k \mid k \mid a \text{ and } k \mid b\}\)
 - Examples
 - gcd\((6, 15) = 3\).
 - gcd\((60, 24) = \gcd(60, -24) = 12\).
 - gcd\((a, 0) = a\).
 - gcd\((a, b)\) can be easily derived if we can factor \(a\) and \(b\).

- Relatively Prime Numbers
 - Integers \(a\) and \(b\) are relatively prime if gcd\((a, b) = 1\).
 - Example: 8 and 15 are relatively prime.

Modulo Operator

- Given any positive integer \(n\) and any integer \(a\), we have \(a = qn + r\), where \(0 \leq r < n\) and \(q = \lceil a / n \rceil\)
 - We write \(a = r \mod n\).
 - The remainder \(r\) is often referred to as a residue.
 - Example:
 - \(2 = 12 \mod 5\).

- Two integer \(a\) and \(b\) are said to be congruent modulo \(n\) if \(a \mod n = b \mod n\).
 - We write \(a \equiv b \mod n\)
 - Example:
 - \(7 \equiv 12 \mod 5\).
Modulo Operator (Cont’d)

- Properties of modulo operator
 - \(a \equiv b \mod n \) if \(n | (a - b) \)
 - \((a \mod n) = (b \mod n) \) implies \(a \equiv b \mod n \).
 - \(a \equiv b \mod n \) implies \(b \equiv a \mod n \).
 - \(a \equiv b \mod n \) and \(b \equiv c \mod n \) imply \(a \equiv c \mod n \).

Modular Arithmetic

- Observation:
 - The \((\mod n)\) operator maps all integers into the set of integers \(\{0, 1, 2, \ldots, (n-1)\}\).
- Modular addition.
 - \([(a \mod n) + (b \mod n)] \mod n = (a+b) \mod n \)
- Modular subtraction.
 - \([(a \mod n) - (b \mod n)] \mod n = (a - b) \mod n \)
- Modular multiplication.
 - \([(a \mod n) \cdot (b \mod n)] \mod n = (a \cdot b) \mod n \)
An Exercise (n=5)

- **Addition**

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Multiplication**

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Exponentiation**

 9² mod 5 = ____

Properties of Modular Arithmetic

- $\mathbb{Z}_n = \{0, 1, \ldots, (n-1)\}$
- Commutative laws
 - $(w + x) \mod n = (x + w) \mod n$
 - $(w \cdot x) \mod n = (x \cdot w) \mod n$
- Associative laws
 - $[(w + x) + y] \mod n = [w + (x + y)] \mod n$
 - $[(w \cdot x) \cdot y] \mod n = [w \cdot (x \cdot y)] \mod n$
- Distributive law
 - $[w \cdot (x + y)] \mod n = [(w \cdot x) + (w \cdot y)] \mod n$
- Identities
 - $(0 + w) \mod n = w \mod n$
 - $(1 \cdot w) \mod n = w \mod n$
- Additive inverse ($-w$)
 - For each $w \in \mathbb{Z}_n$, there exists a z such that $w + z = 0 \mod n$.
About Multiplicative Inverse

• Not always exist
 – Example: There doesn’t exist a z such that $6 \equiv z \equiv 1 \mod 8$.

$$
\begin{array}{cccccc}
 Z_8 & 0 & 1 & 2 & 3 & 4 \\
 6 & 0 & 12 & 24 & 36 & 42 \\
\end{array}
$$

<table>
<thead>
<tr>
<th>Residues</th>
<th>0</th>
<th>6</th>
<th>2</th>
<th>0</th>
<th>6</th>
<th>4</th>
<th>2</th>
</tr>
</thead>
</table>

• An integer $a \in \mathbb{Z}_n$ has a multiplicative inverse if $\gcd(a, n) = 1$.
• In particular, if n is a prime number, then all elements in \mathbb{Z}_n have multiplicative inverse.

Fermat’s Theorem

• If p is prime and a is a positive integer not divisible by p, then $a^{p-1} \equiv 1 \mod p$.
 – Observation: \{a \mod p, 2a \mod p, \ldots, (p-1)a \mod p\} = \{1, 2, \ldots, (p-1)\}.
 – $a \equiv (p-1)a \equiv [(a \mod p) \equiv (2a \mod p) \equiv \ldots \equiv ((p-1)a \mod p)] \mod p$
 – $(p-1)! \equiv a^{p-1} \equiv (p-1)! \mod p$
 – Thus, $a^{p-1} \equiv 1 \mod p$.

Totient Function

- Totient function \(\varphi(n) \): number of numbers less than \(n \) relatively prime to \(n \)
 - If \(n \) is prime, \(\varphi(n) = n - 1 \)
 - If \(n = p \cdot q \), and \(p, q \) are primes, \(\varphi(n) = (p-1)(q-1) \)

- Examples:
 - \(\varphi(7) = \)____
 - \(\varphi(21) = \)____

Euler’s Theorem

- For every \(a \) and \(n \) that are relatively prime, \(a^{\varphi(n)} \equiv 1 \mod n \).
 - Proof leaves as an exercise.

- Examples
 - \(a=3, n=10, \varphi(10)=\)____, \(3^{\varphi(10)} \mod 10 = \)____
 - \(a=2, n=11, \varphi(11)=\)____, \(2^{\varphi(11)} \mod 11 = \)____.
Modular Exponentiation

\[x^y \mod n = x^{y \mod \varphi(n)} \mod n \]

• if \(y = 1 \mod \varphi(n) \) then \(x^y \mod n = x \mod n \)

• Example:
 \[2^{100} \mod 33 = ____ \]

Euclid’s Algorithm

• Observation
 \[\gcd(a, b) = \gcd(b, a \mod b) \]

• Euclid \((d, f), d > f > 0\).
 1. \(X \leftarrow d; Y \leftarrow f \)
 2. If \(Y = 0 \) return \(X = \gcd(d, f) \)
 3. \(R = X \mod Y \)
 4. \(X \leftarrow Y \)
 5. \(Y \leftarrow R \)
 6. Goto 2
Extended Euclid Algorithm

- **Extended Euclid (d, f)**
 1. \((X1, X2, X3) \equiv (1,0,f); (Y1, Y2, Y3) \equiv (0,1,d)\)
 2. If \(Y3=0\) return \(X3=\text{gcd}(d, f)\); no inverse
 3. If \(Y3=1\) return \(Y3=\text{gcd}(d, f)\); \(Y2=d^{-1} \mod f\)
 4. \(Q=\lceil X3/Y3 \rceil\)
 5. \((T1, T2, T3) \equiv (X1 - QY1, X2 - QY2, X3 - QY3)\)
 6. \((X1, X2, X3) \equiv (Y1, Y2, Y3)\)
 7. \((Y1, Y2, Y3) \equiv (T1, T2, T3)\)
 8. Goto 2

- **Observation**
 - \(fX1 + dX2 = X3; fY1 + dY2 = Y3\)
 - If \(Y3 = 1\), then \(fY1 + dY2 = 1\)
 - \(Y2 = d^{-1} \mod f\)

The Power of An Integer Modulo \(n\)

- Consider the following expression
- \(a^m \equiv 1 \mod n\)
- If \(a\) and \(n\) are relatively prime, then there is at least one integer \(m\) that satisfies the above equation.
 - That is, the Euler’s totient function \(\phi(n)\).
- The least positive exponent \(m\) for which the above equation holds is referred to as:
 - The order of \(a \mod n\)
 - The exponent to which \(a\) belongs \(\mod n\)
 - The length of the period generated by \(a\).
Understanding The Order of a (mod n)

- **Powers of Integers Modulo 19**

a	a^1	a^2	a^3	a^4	a^5	a^6	a^7	a^8	a^9	a^{10}	a^{11}	a^{12}	a^{13}	a^{14}	a^{15}	a^{16}	a^{17}	a^{18}	
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	4	8	16	13	7	14	9	18	17	15	11	3	6	12	5	10	1		
4	16	7	9	17	11	6	5	1	4	16	7	9	17	11	6	5	1		
7	11	1	7	11	1	7	11	1	7	11	1	7	11	1					
8	7	18	11	12	1	8	7	18	11	12	1	8	7	18	11	12	1		
9	5	7	6	16	11	4	17	1	9	5	7	6	16	11	4	17	1		
18	1	18	1	18	1	18	1	18	1	18	1	18	1	18	1	18	1		

Observations in The Previous Table

- All sequences end in 1.
- The length of a sequence divides $\phi(19) = 18$.
 - Lengths: 1, 2, 3, 6, 9, 18.
- Some of the sequences are of length 18.
 - The base integer a generates (via powers) all nonzero integers modulo 19.
Primitive Root

- The highest possible order of $a \pmod{n}$ is $\varphi(n)$.
- Primitive root: If the order of $a \pmod{n}$ is $\varphi(n)$, then a is referred to as a primitive root of n.
 - The powers of a: a, a^2, \ldots, a^{p-1} are distinct (mod n) and are all relatively prime to n.
- For a prime number p, if a is a primitive root of p, then a, a^2, \ldots, a^{p-1} are all the distinct numbers mod p.

Discrete Logarithm

- Given a primitive root a for a prime number p:
 - The expression $b \equiv a^i \pmod{p}$, $0 \leq i \leq (p-1)$, produces the integers from 1 to $(p-1)$.
 - The exponent i is referred to as the index of b for the base a (mod p), denoted as $\text{ind}_{a,p}(b)$.
 - $\text{ind}_{a,p}(1)=0$, because $a^0 \pmod{p} = 1$.
 - $\text{ind}_{a,p}(a)=1$, because $a^1 \pmod{p} = a$.

- Example:
 - Integer 2 is a primitive root of prime number 19

<table>
<thead>
<tr>
<th>Number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>0</td>
<td>1</td>
<td>13</td>
<td>2</td>
<td>16</td>
<td>14</td>
<td>6</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Number</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>Index</td>
<td>17</td>
<td>12</td>
<td>15</td>
<td>5</td>
<td>7</td>
<td>11</td>
<td>4</td>
<td>10</td>
<td>9</td>
</tr>
</tbody>
</table>
Discrete Logarithm (Cont’d)

- Consider $x = a^\text{ind}_{a,p}(x) \mod p$, $y = a^\text{ind}_{a,p}(y) \mod p$, and $xy = a^\text{ind}_{a,p}(xy) \mod p$.
 - $a^\text{ind}_{a,p}(xy) \mod p = (a^\text{ind}_{a,p}(x) \mod p)(a^\text{ind}_{a,p}(y) \mod p)$
 - $a^\text{ind}_{a,p}(xy) \mod p = (a^\text{ind}_{a,p}(x)+\text{ind}_{a,p}(y)) \mod p$
 - By Euler’s theorem: $a^z \equiv a^q \mod n$ iff $z \equiv q \mod \phi(p)$.
 - $\text{ind}_{a,p}(xy) = \text{ind}_{a,p}(x) + \text{ind}_{a,p}(y) \mod \phi(p)$.
 - $\text{ind}_{a,p}(y^r) = [r \cdot \text{ind}_{a,p}(y)] \mod \phi(p)$.

- Discrete logarithm mod p: index mod p.

- Computing a discrete logarithm mod a large prime number p is in general difficult
 - Used as the basis of some public key cryptosystems.