

CSC 474/574 Information Systems Security

Topic 4.3 Cover Channels

CSC 474/574

Dr. Peng Ning

1

COVERT CHANNELS

 A covert channel is a communication channel based on the use of system resources not normally intended for communication between the subjects (processes) in the system

NC STATE UNIVERSITY Computer Science

ice

CSC 474/574 Dr. Peng Ning

2

COVERT CHANNELS

- HARMLESS CASES
 - The channel parallels an overt channel (and is therefore legal)
 - The sender and receiver are the same process (mumbling channel)
- HARMFUL CASE
 - The sender and receiver are not permitted to communicate under the given security policy

NC STATE UNIVERSITY Computer Science CSC 474/574 Dr. Peng Ning

COVERT CHANNELS

• Information is leaked unknown to the high principal High Trojan Horse **High Principal Infected Subject COVERT CHANNEL Low Trojan Horse Low Principal Infected Subject** NC STATE UNIVERSITY Computer Science

COVERT CHANNELS

- The concern is with subjects not users
 - users are trusted (must be trusted) not to disclose secret information outside of the computer system
 - subjects are not trusted because they may have Trojan Horses embedded in the code they execute
- star-property prevents overt leakage of information and does not address the covert channel problem

NC STATE UNIVERSITY Computer Science

CSC 474/574 Dr. Peng Ning

COVERT CHANNELS

- Computer systems abound with covert channels
- Covert channels are typically noisy but information theory techniques can be used to achieve error-free communication

NC STATE UNIVERSITY Computer Science

COPING WITH COVERT CHANNELS

- identification
 - close the channel or slow it down
 - tolerate it
 - estimate the bandwidth
 - audit occurrence of events involved in usage of the channel

NC STATE UNIVERSITY Computer Science CSC 474/574 Dr. Peng Ning

STORAGE VS. TIMING CHANNELS

- STORAGE CHANNELS
 - use system variables and attributes (other than time) to signal information
 - classic example is resource exhaustion channel
- TIMING CHANNELS
 - vary the amount of time required to complete a task to signal information
 - classic example is load sensing channel

NC STATE UNIVERSITY Computer Science

RESOURCE EXHAUSTION **CHANNEL**

- Given 5MB pool of dynamically allocated memory
- HIGH PROCESS
 - bit = 1 → request 5MB of memory
 - bit = 0 → request 0MB of memory
- LOW PROCESS
 - request 5MB of memory
 - if allocated then bit = 0 otherwise bit = 1

NC STATE UNIVERSITY Computer Science CSC 474/574 Dr. Peng Ning

LOAD SENSING CHANNEL

- HIGH PROCESS
 - bit = 1 → enter computation intensive loop
 - bit = 0 → go to sleep
- LOW PROCESS
 - perform a task with known computational requirements
 - if completed quickly then bit = 0 otherwise bit =

NC STATE UNIVERSITY Computer Science

SOME SIMPLE STORAGE **CHANNELS**

- file names
- file attributes
 - size
 - date modified
 - protection bits
 - access control lists
- file status
 - open or closed
 - locked or unlocked
- file existence

once identified these are relatively easy to close (in principle)

NC STATE UNIVERSITY Computer Science CSC 474/574 Dr. Peng Ning

11

RESOURCE EXHAUSTION **CHANNELS**

- can be closed by static resource allocation across security classes at the cost of resource utilization
- can be audited to detect attempted usage

NC STATE UNIVERSITY Computer Science

CSC 474/574 Dr. Peng Ning

12

TIMING CHANNELS

- timing channels arising due to low level hardware mechanisms can be very fast (Mbits/second)
- the faster the hardware the faster the timing channel
- examples:
 - cache
 - system bus contention
 - paging delays
 - multiprocessor interconnection networks
- practically impossible to audit

NC STATE UNIVERSITY Computer Science CSC 474/574 Dr. Peng Ning

13

DUALITY OF TIMING AND STORAGE CHANNELS

- many storage channels can be converted to timing channels and vice versa
- for example: channels based on sensing disk delays can be formulated as
 - timing channels since it is the delay which is being measured, or
 - storage channels attributed to the system variable which represents the position of the disk arm

NC STATE UNIVERSITY Computer Science

CSC 474/574 Dr. Peng Ning

14