Approaches to Multi-level Databases

• Partitioning
• Encryption
• Integrity lock
• Trusted Front-End
• Distributed Databases
Partitioning

- Separate data in different levels into different partitions.
 - Redundancy
 - Example: the primary key of a logical relation must be duplicated in all partitions in which the relation are stored.
 - Usability
 - Example: a high-level user needs to combine both high-level and low-level data.

Encryption

- Encrypt the sensitive data at each level with a key unique to that level.
 - Known plaintext attack
 - Example:
 - Party attribute is encrypted.
 - Alice knows party="Democrat" for Bob; she can compare the ciphertext of Bob’s party attribute with other tuples
 - Reason: Limited set of plaintexts.
 - Authentication
 - Example:
 - Replace one ciphertext with another
 - Above problems can be partially avoided with multiple keys.
 - Unable to use DBMS functionalities for encrypted data.
 - Query optimization, indexes, etc.
Integrity Lock

- Provide integrity and limited access for a database.

- Any unauthorized changes to data items can be detected.
- Access to data items is based on the security labels.

Integrity Lock DBMS

- Problems
 - Efficiency
 - Data expansion
 - Processing time required for generating, modifying, and verifying integrity locks
 - Security
 - Untrusted DBMS sees all data passing through it.

Data Security class

- Crypto checksum
- Secret Agent
- Security class
- Key
- Encryption Function
- Data

Encryption Function

- Key
- Secret Agent
- TS
- 10FB

Untrusted DBMS

- Trusted Access Controller
- Sensitive Database
- Users
Trusted Front End

- Trusted Front End
 - User authentication
 - Access control
 - Verification
 - Essentially a reference monitor

Trusted Front End (Cont’d)

- Commutative Filters
 - Processes that interfaces to both the user and the DBMS.
 - Reformat the query by putting in more conditions to filter out unnecessary records.
 - Example:
 - Retrieve NAME where ((Occup= Physicist) ^ (City = WashDC))
 From all records R
 - After reformatting
 - Retrieve NAME where ((Occup= Physicist) ^ (City = WashDC))
 From all records R where
 (Name-level (R) <= User-level) ^
 (Occup-level (R) <= User-level) ^
 (City-level (R) <= User-level)
Distributed Databases

- Store data items at different level in different physical databases
- Trusted front-end translates each query into single-level queries and send to different databases
- Trusted front-end combines results and returns to the user.