Trace Back Overview

- Why do we need trace back?
 - Stop the attacker at the source
 - Hold the attacker accountable
Trace Back Overview (Cont’d)

• Classification
 – IP trace back
 • IP layer
 – Trace back through stepping stones
 • Transport/application layer

IP Trace Back
Approaches for IP Traceback

- **Ingress filtering**
 - Block the packets with illegitimate source addresses
 - Has to examine every packet
 - The router must have sufficient knowledge
 - Not feasible for traffic aggregated from multiple ISPs
 - Requires widespread deployment.
 - DOS attacks are still possible with a customer network.
Approaches for IP Track Back (Cont’d)

- **Link Testing**
 - Input debugging
 - Considerable management overhead
 - Only for ongoing attacks

1. signature
2. deploy signature
3. Find input port
4. signature
5. deploy signature
6. Find input port
7. signature

Approaches for IP Trace Back (Cont’d)

- **Link Testing**
 - Controlled flooding
 - Upstream router iteratively floods each incoming link
 - Observe change received from the attacker
 - It is a DOS attack itself
 - Require accurate topology map
 - Unable to trace distributed DOS attacks

1. notification
2. Controlled flooding
3. notification
4. Controlled flooding
5. notification
Approaches for IP Trace Back (Cont’d)

• Logging
 – Log packets at key routers
 – Use data mining techniques to determine the attack path
 – Only work after the attack
 – Storage requirement
 – Database integration problem

• ICMP trace back
 – Every router sample with low probability the forwarded packet.
 – Send selected information to the source or the destination in an ICMP traceback message.
 • Forward or backward link
 – Victim reconstructs the attack path using the above information
 – May be filtered out.
 – Requires authentication, and thus key distribution.
Approaches for IP Trace Back (Cont’d)

• Probabilistic packet marking
 – Probabilistically mark the packets with the routers’ addresses
 – Reconstruct the attack path using these addresses

• Potential advantages
 – No interactive cooperation [little management overhead]
 – No significant additional network traffic
 – Can be used both during and after attacks
 – Low overhead on routers.

Probabilistic Packet Marking

• Our discussion is limited to
Probabilistic Packet Marking (Cont’d)

- Attack path from A_i
 - The unique ordered list of routers between A_i and V
- The problem
 - Exact traceback
 - Difficult, since the attacker may send false information.
 - Approximate traceback
 - Find the attack path that contains the true attack path as a suffix
- Marking procedure
- Reconstruction procedure
- Convergence time

Assumptions

- An attacker may generate any packet
- Multiple attackers may conspire
- Attackers may be aware they are being traced
- Packets may be lost or reordered
- Attackers send numerous packets
- The route between attacker and victim is fairly stable
- Routers are both CPU and memory limited
- Routers are not widely compromised
Marking Algorithm (1)

• Node Append
 – At each router R
 • For each packet w, append R to w
 – At victim v
 • For any packet w from attacker
 – Extract path $(R_i \ldots R_j)$ from the suffix of w

• Problems
 – High router overhead
 – Unbounded space requirement in the packets
 • Any reserved space may be filled up by the attacker.

Marking Algorithm (2)

• Node Sampling
 – Reserve one node field in the packet header
 – At each router R
 • For each packet w, write R into w.node with probability p
 – At victim v
 • The order of the routers is not preserved in the order of received packets.
 • How to construct an ordered path?
Node Sampling (Cont’d)

- Assume all routers mark their addresses with equal probability p.
- What’s the probability that v receives a packet marked by a router d hops away?
 -
- Observation:
 - The farther away R is, the less chance v receives packets marked by R.

Node Sampling (Cont’d)

- Reconstruction procedure at victim v
 - Count the number of packets marked by each router
 - Sort the routers by this count in increasing order
 - The ordered router list \Rightarrow attack path.
- Limitations
 - Slow convergence
 - $d = 15$ and $p = 0.51$ \Rightarrow need 42,000 packets
 - Cannot deal with multiple attackers
Marking Algorithm (3)

- **Edge Sampling**
 - Idea: put *edge* instead of *node* into the packets
 - Reserve *start*, *end*, and *distance* fields in packet header
 - (start, end): the marked edge (link)
 - distance: the distance from start to the victim

Edge Sampling (Cont’d)

- At each router R
 - For each packet w
 - With probability p, write R into $w.start$ and 0 into $w.distance$
 - If R doesn’t write $w.start$
 - If $w.distance = 0$ (i.e., the previous router just marked start), write R into $w.end$
 - Increment $w.distance$
Edge Sampling (Cont’d)

- At victim v
 - Let G be a tree with root v
 - Let edges in G be tuples $(\text{start, end, distance})$
 - For each packet w from attacker
 - If $w.distance = 0$ then
 - Insert $(w.start, v, 0)$ into G
 - Else
 - Insert edge $(w.start, w.end, w.distance)$ into G
 - Remove edges (x, y, d) with $d \neq$ distance from x to v in G
 - Remove inconsistent edges.
 - Extract path (R_i, \ldots, R_j) by listing acyclic paths in G.

Edge Sampling (Cont’d)

- Effectiveness
 - Can discern multiple attackers
 - Robust: impossible for any edge closer than the closest attacker to be spoofed
 - Number of packets needed to reconstruct all paths is linear in the number of attackers.

- Limitations
 - Require additional space in IP packet header
 - Two 32 bit IP addresses + 8 bit distance ≈ 72 bits
Encoding

• Problem:
 – Where to save the edge samples?
• Idea
 – compress the edge sample and store it in the identification field (16 bits for fragmentation)
• Three techniques

Encoding (Cont’d)

• Technique 1: Send XOR of the two nodes of an edge.
Encoding (Cont’d)

• Technique 2: reduce per-packet space requirement by splitting each edge-id into k fragments.
 – Each fragment is associated with $32/k$ bit data + $\log_2{k}$ bit offset
 – Reconstruct fragments with the same distance
 • Doesn’t work if there are multiple attack paths.

Encoding (Cont’d)

• Technique 3: Interleaving edge-id and its hash and then fragment
Coding (Cont’d)

- Techniques 3 (Cont’d): reconstruction

\[
\begin{align*}
\text{Bit Interleave} & \quad \text{Combine } k \text{ fragments} \\
0 & \quad k - 1 \\
\text{Edge id} & \quad \text{Hash (Edge id)} \\
\text{Hash} & \quad =? \\
\text{Y: accept} & \quad \text{N: reject}
\end{align*}
\]

Further Reading

- Dawn Song, Adrian Perrig: Advanced and Authenticatd Marking Schemes for IP Traceback, IEEE Infocom 2001