Hash Function

- Also known as
 - Message digest
 - One-way transformation
 - One-way function
 - Hash
- Length of $H(m)$ much shorter than length of m
- Usually fixed lengths: 128 or 160 bits
Requirements for a Hash Function

- Consider a hash function H
 - **Flexibility**: Can be applied to a block of data of any size
 - **Convenience (for check)**: produce a fixed-length short output.
 - **Performance**: Easy to compute $H(m)$
 - **One-way property**: Given $H(m)$ but not m, it’s difficult to find m
 - **Weak collision resistance (free)**: Given $H(m)$, it’s difficult to find m' such that $H(m') = H(m)$.
 - **Strong collision resistance (free)**: Computationally infeasible to find m_1, m_2 such that $H(m_1) = H(m_2)$

Birthday Paradox

- **Question**:
 - What is the minimum value of k such that the probability is greater than 0.5 that at least two people in a group of k people have the same birthday?
 - Ignore February 29 and assume each birthday is equally likely.
 - Probability of k people having k different birthdays:
 $$Q(365,k) = \frac{365!}{(365-k)!365^k}$$
 - Probability that at least two people have the same birthday:
 $$P(365,k) = 1 - Q(365,k)$$
 - K is about 23.
Generalization of Birthday Paradox

- Given a random variable that is an integer with uniform distribution between 1 and n and a selection of k instances of the random variables, what is the least value of k such that the probability $P(n,k)$ is greater than 0.5 that there is at least one duplicate?
 - $P(n,k) > 1 - e^{-k(k-1)/2n}$
 - For large n and k, we have
 $$k = \sqrt{2(\ln 2)n} \approx 1.18\sqrt{n} \approx \sqrt{n}$$
 - Intuition: How many k do we need to have a collision with $P=0.5$?

- Implication
 - For a hash function H with 2^m possible outputs, if we apply H to $k=(2^m)^{1/2}=2^{m/2}$ random inputs, the probability that there is at least one duplicate is greater than 0.5.

Birthday Attack

- The source, A, is prepared to sign a message
- The opponent generates $2^{m/2}$ variations on the message, and prepares $2^{m/2}$ variations on the fraudulent message.
- The opponent compares the two sets of messages to find a pair of messages that produces the same hash value. The probability of success is greater than 0.5. The opponent repeats generating variations until a match is found.
- The opponent offers the valid variation to A for signature, but attaches the signature to the fraudulent variation.
How Many Bits for Hash?

- m bits, takes $2^{m/2}$ to find two with the same hash at the probability 0.5
- 64 bits, takes 2^{32} messages to search duplicate
- Need at least 128 bits

Building Hash Using Block Chaining Techniques

- Divide M into fixed-size blocks M_1, M_2, \ldots, M_n
- Compute the hash as follows
 - $H_0 =$ Initial value
 - $H_i = E_{M_i}(H_{i-1})$
 - Hash value $G = H_n$
- Weakness
 - Birthday attack (reason: hash value is too short)
 - Meet-in-the-middle attack
Building Hash Using Block Chaining Techniques (Cont’d)

- Meet-in-the-middle attack
 - Get the correct hash value G
 - Construct any message in the form $Q_1, Q_2, \ldots, Q_{n-2}$
 - Compute $H_i = E_{Q_i}(H_{i-1})$ for $1 \leq i \leq (n-2)$.
 - Generate $2^{m/2}$ random blocks; for each block X, compute $E_X(H_{n-2})$.
 - Generate $2^{m/2}$ random blocks; for each block Y, compute $D_Y(G)$.
 - With high probability there will be an X and Y such that $E_X(H_{n-2}) = D_Y(G)$.
 - Form the message $Q_1, Q_2, \ldots, Q_{n-2}, X, Y$. It has the hash value G.

Modern Hash Functions

- MD5
 - Previous versions (i.e., MD2, MD4) have weaknesses.
- SHA (Secure Hash Algorithm)
- SHA-1
- RIPEMD-160
MD5: Message Digest Version 5

input Message

Output 128 bits Digest

MD5: A High-Level View

K bits
Padding (1 to 512 bits)
Message Length (K mod 2^64)

Message

100...0

Y₀

512 bits

Y₁

512 bits

...

Yₗ₋₁

512 bits

IV

MD5

128 bits

MD5

CV₁

MD5

CVₗ₋₁

128-bit digest
Padding

- Given original message M, add padding bits “10*” such that resulting length is 64 bits less than a multiple of 512 bits.
- Append (original length in bits mod 2^{64}), represented in 64 bits to the padded message
- Final message is chopped 512 bits a block
- Exercise:
 - How to add padding bits to a message that is already a multiple of 512 bits?

MD5 (Intermediate) Buffer

- Used to hold intermediate and final result of MD5.
- 128 bits
- Represented as four 32-bit words
 - (A,B,C,D)
 - Initially, A=0x67452301, B=0xEFCDAB89, C=0x98BADCFE, D=0x10325476
 - Stored in little-endian format, A=0x01234567, B=0x89ABCDEF, C=0xFEDCBA98, D=0x76543210.
Processing of A Single Block

512-bit message block (16 words)

128-bit vector
(Initial or from
the previous
block)

MD5

128-bit result

Primitive operations
used in MD5:

F(x,y,z) = (x \land y) \lor (\neg x \land z)
G(x,y,z) = (x \land z) \lor (y \land \neg z)
H(x,y,z) = x \oplus y \oplus z
I(x,y,z) = y \Theta (x \land \neg z)

+: addition mod 2^{32}
x \lrcorner y: x left rotate y bits

Processing of A Single Block (Cont’d)

- Every message block contains 16 32-bit words:
- Every stage consists of 4 rounds over the message block, each modifying the MD5 buffer (A,B,C,D).
 - The four rounds use functions F, G, H, I, respectively.
- Each round uses one-fourth of a 64-element table T[1…64].
 - T[i] = 2^{32} \times \text{abs(sin}(i)) \text{ represented in 32 bits.}
- The output of the fourth round is added to the input to the first round.
Logic of Each Round

- Each round consists of 16 steps
- Each step is of the form
 - $A \leftarrow B + ((A + g(B, C, D) + X[k] + T[i]) \ll s)$
 - Function g is one of F, G, H, I
 - $X[k]$ is the word in the input
 - $T[i]$ is the ith word in T
 - $\ll s$: circular left shift by s bits.
 - Followed by a word level circular right shift of one word.
Logic of Each Step

- Within a round, each of the 16 words of $X[i]$ is used exactly
 - First round, $X[i]$ are used in the order of I
 - Round 2, in the order of $\rho_2(i)$, where $\rho_2(i) = (1 + 5i) \mod 16$
 - Round 3, in the order or $\rho_3(i)$, where $\rho_3(i) = (5 + 3i) \mod 16$
 - Round 4, in the order or $\rho_4(i)$, where $\rho_2(i) = 7i \mod 16$
- Each word of $T[i]$ is used exactly once.
Security of MD5

• A recently discovered method can find a collision in a few hours
 – A few collisions were published on 8/17/04
 – Exact method has not been published yet
 – Can find many collisions for two 1024-bit messages

• Birthday attack
 – 2^{64}