Basic Number Theory

- We are talking about integers!
- Divisor
 - We say that \(b \neq 0 \) divides \(a \) if \(a = mb \) for some \(m \), denoted \(b|a \). \(b \) is a divisor of \(a \).
 - If \(a|1 \), then \(a = 1 \) or \(-1\).
 - If \(a|b \) and \(b|a \), then \(a = b \) or \(-b\).
 - Any \(b \neq 0 \) divides 0.
 - If \(b|g \) and \(b|h \), then \(b|(mg+nh) \) for arbitrary integers \(m \) and \(n \).
Basic Number Theory (Cont’d)

- **Prime numbers**
 - An integer \(p > 1 \) is a prime number if its only divisors are \(1, -1, p, \) and \(-p \).
 - Examples: 2, 3, 5, 7, 11, 13, 17, 19, 31,…
- **Any integer \(a > 1 \) can be factored in a unique way as** \(a = p_1^{a_1} p_2^{a_2} \ldots p_t^{a_t} \)
 - where each \(p_1 > p_2 > \ldots > p_t \) are prime numbers and where each \(a_i > 0 \).
 - Examples: \(91 = 13 \times 7 \), \(11011 = 13 \times 11^2 \times 7 \).

Basic Number Theory (Cont’d)

- **Another view of \(a | b \):**
 - Let \(P \) be the set of all prime numbers
 - Represent \(a \) as \(a = \Pi_{p \in P} p^{a_p} \), where \(a_p \geq 0 \).
 - Represent \(b \) as \(b = \Pi_{p \in P} p^{b_p} \), where \(b_p \geq 0 \).
 - \(a | b \) means that \(a_i \leq b_i \).
Basic Number Theory (Cont’d)

- Greatest common divisor: \(\gcd(a, b) \)
 - \(\gcd(a, b) = \max \{k \mid k|a \text{ and } k|b\} \)
 - Examples
 - \(\gcd(6, 15) = 3 \).
 - \(\gcd(60, 24) = \gcd(60, -24) = 12 \).
 - \(\gcd(a, 0) = a \).
 - \(\gcd(a, b) \) can be easily derived if we can factor \(a \) and \(b \).

- Relatively Prime Numbers
 - Integers \(a \) and \(b \) are relatively prime if \(\gcd(a, b) = 1 \).
 - Example: 8 and 15 are relatively prime.

Modulo Operator

- Given any positive integer \(n \) and any integer \(a \), we have \(a = qn + r \), where \(0 \leq r < n \) and \(q = \lfloor a/n \rfloor \).
 - We write \(r = a \mod n \).
 - The remainder \(r \) is often referred to as a residue.
 - Example:
 - \(2 = 12 \mod 5 \).

- Two integer \(a \) and \(b \) are said to be congruent modulo \(n \) if \(a \mod n = b \mod n \).
 - We write \(a \equiv b \mod n \).
 - Example:
 - \(7 = 12 \mod 5 \).
Modulo Operator (Cont’d)

• Properties of modulo operator
 – \(a \equiv b \mod n \) if \(n | (a - b) \)
 – \((a \mod n) = (b \mod n)\) implies \(a \equiv b \mod n \).
 – \(a \equiv b \mod n \) implies \(b \equiv a \mod n \).
 – \(a \equiv b \mod n \) and \(b \equiv c \mod n \) imply \(a \equiv c \mod n \).

Modular Arithmetic

• Observation:
 – The \((\mod n)\) operator maps all integers into the set of integers \{0, 1, 2, …, (n-1)\}.
• Modular addition.
 – \([(a \mod n) + (b \mod n)] \mod n = (a+b) \mod n\)
• Modular subtraction.
 – \([(a \mod n) - (b \mod n)] \mod n = (a - b) \mod n\)
• Modular multiplication.
 – \([(a \mod n) \times (b \mod n)] \mod n = (a \times b) \mod n\)
An Exercise (n=5)

• **Addition**

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• **Multiplication**

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exponentiation
9^{2^{10}} \mod 5 = _____

Properties of Modular Arithmetic

• $\mathbb{Z}_n = \{0, 1, \ldots, (n-1)\}$

• Commutative laws
 – $(w + x) \mod n = (x + w) \mod n$
 – $(w \times x) \mod n = (x \times w) \mod n$

• Associative laws
 – $[((w + x) + y) \mod n] = [(w + (x + y)) \mod n]$
 – $[((w \times x) \times y) \mod n] = [(w \times (x \times y)) \mod n]$

• Distributive law
 – $[w \times (x + y)] \mod n = [(w \times x) + (w \times y)] \mod n$

• Identities
 – $(0 + w) \mod n = w \mod n$
 – $(1 \times w) \mod n = w \mod n$

• Additive inverse ($-w$)
 – For each $w \in \mathbb{Z}_n$, there exists a z such that $w + z = 0 \mod n$.
About Multiplicative Inverse

• Not always exist
 – Example: There doesn’t exist a z such that $6 \times z = 1 \mod 8$.

<table>
<thead>
<tr>
<th>Z_8</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\times 6$</td>
<td>0</td>
<td>6</td>
<td>12</td>
<td>18</td>
<td>24</td>
<td>30</td>
<td>36</td>
<td>42</td>
</tr>
<tr>
<td>Residues</td>
<td>0</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

• An integer $a \in \mathbb{Z}_n$ has a multiplicative inverse if $\gcd(a, n) = 1$.

• In particular, if n is a prime number, then all elements in \mathbb{Z}_n have multiplicative inverse.

Fermat’s Theorem

• If p is prime and a is a positive integer not divisible by p, then $a^{p-1} \equiv 1 \mod p$.
 – Observation: \{a \mod p, 2a \mod p, \ldots, (p-1)a \mod p\} = \{1, 2, \ldots, (p-1)\}.
 – $a \times 2a \times \ldots \times (p-1)a \equiv [(a \mod p) \times (2a \mod p) \times \ldots \times ((p-1)a \mod p)] \mod p$
 – $(p-1)! \times a^{p-1} \equiv (p-1)! \mod p$
 – Thus, $a^{p-1} \equiv 1 \mod p$.

Totient Function

- Totient function $\phi(n)$: number of integers less than n and relatively prime to n
 - If n is prime, $\phi(n)=n-1$
 - If $n=p\times q$, and p, q are primes, $\phi(n)=(p-1)(q-1)$
- Examples:
 - $\phi(7) =$
 - $\phi(21) =$

Euler’s Theorem

- For every a and n that are relatively prime, $a^{\phi(n)} \equiv 1 \mod n$.
 - Proof leaves as an exercise.
- Examples
 - $a=3$, $n=10$, $\phi(10) =$, $3^{\phi(10)} \mod 10 =$
 - $a=2$, $n=11$, $\phi(11) =$, $2^{\phi(11)} \mod 11 =$
Modular Exponentiation

- $x^y \mod n = x^{y \mod \phi(n)} \mod n$
- if $y = 1 \mod \phi(n)$ then $x^y \mod n = x \mod n$
- Example:
 - $2^{100} \mod 33 = ____$

Euclid’s Algorithm

- Observation
 - $\gcd(a, b) = \gcd(b, a \mod b)$
- Eulid $(d, f), d > f > 0$.
 1. $X \leftarrow d; Y \leftarrow f$
 2. If $Y = 0$ return $X = \gcd(d, f)$
 3. $R = X \mod Y$
 4. $X \leftarrow Y$
 5. $Y \leftarrow R$
 6. Goto 2
Extended Euclid Algorithm

- Extended Euclid (d, f)
 1. \((X_1, X_2, X_3) \leftarrow (1,0,d); \(Y_1, Y_2, Y_3) \leftarrow (0,1,f)\)
 2. If \(Y_3=0\) return \(X_3=gcd\ (d, f)\); no inverse
 3. If \(Y_3=1\) return \(Y_3=gcd\ (d, f); Y_2=d^{-1} \mod f\)
 4. \(Q=[X_3/Y_3]\)
 5. \((T_1, T_2, T_3) \leftarrow (X_1 - QY_1, X_2 - QY_2, X_3 - QY_3)\)
 6. \((X_1, X_2, X_3) \leftarrow (Y_1, Y_2, Y_3)\)
 7. \((Y_1, Y_2, Y_3) \leftarrow (T_1, T_2, T_3)\)
 8. Goto 2

- Observation
 - \(dX_1 + fX_2 = X_3; fY_1 + dY_2 = Y_3\)
 - If \(Y_3 = 1\), then \(fY_1 + dY_2 = 1\)
 - \(Y_2 = d^{-1} \mod f\)

The Power of An Integer Modulo \(n\)

- Consider the following expression
 - \(a^m \equiv 1 \mod n\)
- If \(a\) and \(n\) are relatively prime, then there is at least one integer \(m\) that satisfies the above equation.
 - That is, the Euler’s totient function \(\phi(n)\).
- The least positive exponent \(m\) for which the above equation holds is referred to as:
 - The order of \(a \pmod{n}\)
 - The exponent to which \(a\) belongs \(\pmod{n}\)
 - The length of the period generated by \(a\).
Understanding The Order of $a \pmod{n}$

- **Powers of Integers Modulo 19**

<table>
<thead>
<tr>
<th></th>
<th>a^1</th>
<th>a^2</th>
<th>a^3</th>
<th>a^4</th>
<th>a^5</th>
<th>a^6</th>
<th>a^7</th>
<th>a^8</th>
<th>a^9</th>
<th>a^{10}</th>
<th>a^{11}</th>
<th>a^{12}</th>
<th>a^{13}</th>
<th>a^{14}</th>
<th>a^{15}</th>
<th>a^{16}</th>
<th>a^{17}</th>
<th>a^{18}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>13</td>
<td>7</td>
<td>14</td>
<td>9</td>
<td>18</td>
<td>17</td>
<td>15</td>
<td>11</td>
<td>3</td>
<td>6</td>
<td>12</td>
<td>5</td>
<td>10</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>7</td>
<td>9</td>
<td>17</td>
<td>11</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>16</td>
<td>7</td>
<td>9</td>
<td>17</td>
<td>11</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>18</td>
<td>11</td>
<td>12</td>
<td>1</td>
<td>8</td>
<td>7</td>
<td>18</td>
<td>11</td>
<td>12</td>
<td>1</td>
<td>8</td>
<td>7</td>
<td>18</td>
<td>11</td>
<td>12</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td>16</td>
<td>11</td>
<td>4</td>
<td>17</td>
<td>1</td>
<td>9</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td>16</td>
<td>11</td>
<td>4</td>
<td>17</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Observations in The Previous Table

- All sequences end in 1.
- The length of a sequence divides $\phi(19) = 18$.
 - Lengths: 1, 2, 3, 6, 9, 18.
- Some of the sequences are of length 18.
 - The base integer a generates (via powers) all nonzero integers modulo 19.
Primitive Root

- The highest possible order of \(a \pmod{n} \) is \(\phi(n) \).
- Primitive root: If the order of \(a \pmod{n} \) is \(\phi(n) \), then \(a \) is referred to as a primitive root of \(n \).
 - The powers of \(a \): \(a, a^2, \ldots, a^{n-1} \) are distinct \(\pmod{n} \) and are all relatively prime to \(n \).
- For a prime number \(p \), if \(a \) is a primitive root of \(p \), then \(a, a^2, \ldots, a^{p-1} \) are all the distinct numbers \(\pmod{p} \).

Discrete Logarithm

- Given a primitive root \(a \) for a prime number \(p \):
 - The expression \(b \equiv a^i \pmod{p}, 0 \leq i \leq (p-1) \), produces the integers from 1 to \((p-1) \).
 - The exponent \(i \) is referred to as the index of \(b \) for the base \(a \pmod{p} \), denoted as \(\text{ind}_{a,p}(b) \).
 - \(\text{ind}_{a,p}(1) = 0 \), because \(a^0 \pmod{p} = 1 \).
 - \(\text{ind}_{a,p}(a) = 1 \), because \(a^1 \pmod{p} = a \).
- Example:
 - Integer 2 is a primitive root of prime number 19

<table>
<thead>
<tr>
<th>Number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>0</td>
<td>1</td>
<td>13</td>
<td>2</td>
<td>16</td>
<td>14</td>
<td>6</td>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>17</td>
<td>12</td>
<td>15</td>
<td>5</td>
<td>7</td>
<td>11</td>
<td>4</td>
<td>10</td>
<td>9</td>
</tr>
</tbody>
</table>
Discrete Logarithm (Cont’d)

- Consider \(x = a^{\text{ind}_{a,p}(x)} \mod p \), \(y = a^{\text{ind}_{a,p}(y)} \mod p \), and \(xy = a^{\text{ind}_{a,p}(xy)} \mod p \),
 \[a^{\text{ind}_{a,p}(x)} \mod p = (a^{\text{ind}_{a,p}(x)} \mod p)(a^{\text{ind}_{a,p}(y)} \mod p) \]
 \[a^{\text{ind}_{a,p}(xy)} \mod p = (a^{\text{ind}_{a,p}(x)+\text{ind}_{a,p}(y)}) \mod p \]
 – By Euler’s theorem: \(a^z \equiv a^q \mod p \) iff \(z \equiv q \mod \phi(p) \).
 – \(\text{ind}_{a,p}(xy) = \text{ind}_{a,p}(x)+\text{ind}_{a,p}(y) \mod \phi(p) \).
 – \(\text{ind}_{a,p}(y^r) = [r \cdot \text{ind}_{a,p}(y)] \mod \phi(p) \).

- Discrete logarithm mod \(p \): index mod \(p \).
- Computing a discrete logarithm mod a large prime number \(p \) is in general difficult
 – Used as the basis of some public key cryptosystems.