Authentication Handshakes

• Secure communication almost always includes an initial authentication handshake.
 – Authenticate each other
 – Establish session keys
 – *This process is not trivial; flaws in this process undermines secure communication*

• This topic is about typical flaws
Authentication with Shared Secret

- **Weaknesses**
 - Authentication is not mutual; Trudy can convince Alice that she is Bob
 - Trudy can hijack the conversation after the initial exchange
 - If the shared key is derived from a password, Trudy can mount an off-line password guessing attack
 - Trudy may compromise Bob’s database and later impersonate Alice

```
Alice: I’m Alice
Bob: A challenge $R$
Alice: $f(K_{Alice-Bob}, R)$
```

Authentication with Shared Secret (Cont’d)

- **Weaknesses**
 - All the previous weaknesses remain
 - Trudy doesn’t have to see R to mount off-line password guessing if R has certain patterns (e.g., concatenated with a timestamp)
 - Trudy sends a message to Bob, pretending to be Alice
Authentication with Public Key

- Bob’s database is less risky
- Weaknesses
 - Authentication is not mutual; Trudy can convince Alice that she is Bob
 - Trudy can hijack the conversation after the initial exchange
 - Trudy can trick Alice into signing something
 - Use different private key for authentication

Authentication with Public Key (Cont’d)

A variation
Mutual Authentication

Alice

I’m Alice

R_1

$f(K_{Alice-Bob}, R_1)$

R_2

$f(K_{Alice-Bob}, R_2)$

Bob

Optimize

Alice

I’m Alice, R_2

$R_1, f(K_{Alice-Bob}, R_2)$

$f(K_{Alice-Bob}, R_1)$

Bob

Mutual Authentication (Cont’d)

• Reflection attack

Trudy

I’m Alice, R_2

$R_1, f(K_{Alice-Bob}, R_2)$

$f(K_{Alice-Bob}, R_1)$

Bob

Trudy

I’m Alice, R_1

$R_{3x}, f(K_{Alice-Bob}, R_1)$

Bob
Reflection Attacks (Con’td)

- Lesson: Don’t have Alice and Bob do exactly the same thing
 - Different keys
 - Totally different keys
 - $K_{\text{Alice-Bob}} = K_{\text{Bob-Alice}} + 1$
 - Different Challenges
 - The initiator should be the first to prove its identity
 - Assumption: initiator is more likely to be the bad guy

Mutual Authentication (Cont’d)

- Password guessing

\[
\begin{align*}
\text{Alice} & \quad \text{Bob} \\
\text{I’m Alice, } R_2 & \quad R_1, f(K_{\text{Alice-Bob}}, R_2) \\
& \quad f(K_{\text{Alice-Bob}}, R_1)
\end{align*}
\]

\text{Countermeasure}

\[
\begin{align*}
\text{Alice} & \quad \text{Bob} \\
\text{I’m Alice} & \quad R_1 \\
& \quad f(K_{\text{Alice-Bob}}, R_1), R_2 \\
& \quad f(K_{\text{Alice-Bob}}, R_2)
\end{align*}
\]
Mutual Authentication (Cont’d)

• Public keys
 – Authentication of public keys is a critical issue

 Alice → Bob
 I’m Alice, \(R_2 \)\{Bob\}
 \(R_2, \{R_1\}_{Alice} \)
 \(R_1 \)

Mutual Authentication (Cont’d)

• Mutual authentication with timestamps
 – Require synchronized clocks
 – Alice and Bob have to encrypt different timestamps

 Alice → Bob
 I’m Alice, \(f(K_{Alice-Bob}, \text{timestamp}) \)
 \(f(K_{Alice-Bob}, \text{timestamp} + 1) \)
Integrity/Encryption for Data

- Communication after mutual authentication should be cryptographically protected as well
 - Require a session key established during mutual authentication

Establishment of Session Keys

- Secret key based authentication
 - Assume the above authentication happened.
 - Can we use $K_{\text{Alice-Bob}}\{R\}$ as the session key?
 - Can we use $K_{\text{Alice-Bob}}\{R+1\}$ as the session key?
 - In general, modify $K_{\text{Alice-Bob}}$ and encrypt R. Use the result as the session key

\[
\begin{array}{c}
\text{Alice} \\
R \\
K_{\text{Alice-Bob}}\{R\} \\
\text{Bob}
\end{array}
\]

I’m Alice
Establishment of Session Keys (Cont’d)

- Two-way public key based authentication
 - Alice chooses a random number R, encrypts it with Bob’s public key
 - Trudy may hijack the conversation
 - Alice encrypts and signs R
 - Trudy may save all the traffic, and decrypt all the encrypted traffic when she is able to compromise Bob
 - Less severe threat

Two-Way Public Key Based Authentication (Cont’d)

- A better approach
 - Alice chooses and encrypts R_1 with Bob’s public key
 - Bob chooses and encrypts R_2 with Alice’s public key
 - Session key is $R_1 \oplus R_2$
 - Trudy will have to compromise both Alice and Bob

- An even better approach
 - Alice and Bob establish the session key with Diffie-Hellman key exchange
 - Alice and Bob signs the quantity they send
 - Trudy can’t learn anything about the session key even if she compromises both Alice and Bob
Establishment of Session Keys (Cont’d)

• One-way public key based authentication
 – It’s only necessary to authenticate the service
 • Example: SSL
 – Encrypt R with Bob’s public key
 – Diffie-Hellman key exchange
 • Bob signs the D-H public key

Mediated Authentication (With KDC)

KDC operation (in principle)

- Alice wants Bob
- K_{Alice}(K_{AB})
- Generate K_{AB}
- K_{Bob}(K_{AB})
- Bob

• Some concerns
 – Trudy may claim to be Alice and talk to KDC
 • Trudy cannot get anything useful
 – Messages encrypted by Alice may get to Bob before KDC’s message
 – It may be difficult for KDC to connect to Bob
Mediated Authentication (With KDC)

KDC operation (in practice)

- Must be followed by a mutual authentication exchange
 - To confirm that Alice and Bob have the same key

Needham-Schroeder Protocol

- Classic protocol for authentication with KDC
 - Many others have been modeled after it (e.g., Kerberos)
- Nonce: A number that is used only once
 - Deal with replay attacks
Needham-Schroeder Protocol (Cont’d)

- A vulnerability
 - When Trudy gets a previous key used by Alice, Trudy may reuse a previous ticket issued to Bob for Alice
 - Essential reason
 - The ticket to Bob stays valid even if Alice changes her key

Expanded Needham-Schroeder Protocol

- The additional two messages assure Bob that the initiator has talked to KDC since Bob generates N_B
Otway-Rees Protocol

- Only has five messages
- KDC checks if N_C matches in both cipher-texts
 - Make sure that Bob is really Bob