Outline

- IPsec Objectives
- IPsec architecture & concepts
- IPsec authentication header
- IPsec encapsulating security payload

IPsec Objectives

- Why do we need IPsec?
 - IP V4 has no authentication
 - IP spoofing
 - Payload could be changed without detection.
 - IP V4 has no confidentiality mechanism
 - Eavesdropping
 - Denial of service (DOS) attacks
 - Cannot hold the attacker accountable due to the lack of authentication.

IPsec Objectives (Cont’d)

- IP layer security mechanism for IPv4 and IPv6
 - Not all applications need to be security aware
 - Can be transparent to users
 - Provide authentication and confidentiality mechanisms.

IPsec Architecture

```
SPD: Security Policy Database; IKE: Internet Key Exchange;
SA: Security Association; SAD: Security Association Database.
```

IPsec Architecture (Cont’d)

- Two Protocols (Mechanisms)
 - Authentication Header (AH)
 - Encapsulating Security Payload (ESP)
- IKE Protocol
 - Internet Key Management
IPsec Architecture (Cont’d)

- Can be implemented in
 - Host or gateway
- Can work in two Modes
 - Tunnel mode
 - Transport mode

Hosts & Gateways

- Hosts can implement IPsec to connect to:
 - Other hosts in transport or tunnel mode
 - Or Gateways in tunnel mode
- Gateways to gateways
 - Tunnel mode

Tunnel Mode

- ESP applies only to the tunneled packet
- AH can be applied to portions of the outer header

Tunnel Mode (Cont’d)

- ESP protects higher layer payload only
- AH can protect IP headers as well as higher layer payload

Transport Mode

- Encrypted/Authenticated

Transport Mode (Cont’d)

- AH can protect IP headers as well as higher layer payload
Security Association (SA)
- An association between a sender and a receiver
 - Consists of a set of security related parameters
 - E.g., sequence number, encryption key
- One way relationship
- Determine IPsec processing for senders
- Determine IPsec decoding for destination
- SAs are not fixed! Generated and customized per traffic flows

Security Parameters Index (SPI)
- A bit string assigned to an SA.
- Carried in AH and ESP headers to enable the receiving system to select the SA under which the packet will be processed.
- 32 bits
- SPI + Dest IP address + IPsec Protocol
 - Uniquely identifies each SA in SA Database (SAD)

SA Database (SAD)
- Holds parameters for each SA
 - Sequence number counter
 - Lifetime of this SA
 - AH and ESP information
 - Tunnel or transport mode
- Every host or gateway participating in IPsec has their own SA database

SA Bundle
- More than 1 SA can apply to a packet
- Example: ESP does not authenticate new IP header. How to authenticate?
 - Use SA to apply ESP w/out authentication to original packet
 - Use 2nd SA to apply AH

Security Policy Database (SPD)
- Decide
 - What traffic to protect?
 - Has incoming traffic been properly secured?
- Policy entries define which SA or SA Bundles to use on IP traffic
- Each host or gateway has their own SPD
- Index into SPD by Selector fields
 - Selectors: IP and upper-layer protocol field values.
 - Examples: Dest IP, Source IP, Transport Protocol, IPsec Protocol, Source & Dest Ports, …

SPD Entry Actions
- Discard
 - Do not let in or out
- Bypass
 - Outbound: do not apply IPSec
 - Inbound: do not expect IPSec
- Protect – will point to an SA or SA bundle
 - Outbound: apply security
 - Inbound: security must have been applied
SPD Protect Action

- If the SA does not exist…
 - Outbound processing
 - Trigger key management protocols to generate SA dynamically, or
 - Request manual specification, or
 - Other methods
 - Inbound processing
 - Drop packet

Outbound Processing

![Diagram of Outbound Processing]

Inbound Processing

![Diagram of Inbound Processing]

Authentication Header (AH)

- Data integrity
 - Entire packet has not been tampered with
- Authentication
 - Can “trust” IP address source
 - Use MAC to authenticate
- Anti-replay feature
- Integrity check value

Integrity Check Value - ICV

- Message authentication code (MAC) calculated over
 - IP header fields that do not change or are predictable
 - IP header fields that are unpredictable are set to zero.
 - IPsec AH header with the ICV field set to zero.
 - Upper-level data
- Code may be truncated to first 96 bits

IPsec Authentication Header

![Diagram of IPsec Authentication Header]
Encapsulated Security Protocol (ESP)

- Confidentiality for upper layer protocol
- Partial traffic flow confidentiality (Tunnel mode only)
- Data origin authentication and connectionless integrity (optional)

Outbound Packet Processing

- Form ESP payload
- Pad as necessary
- Encrypt result [payload, padding, pad length, next header]
- Apply authentication

Outbound Packet Processing...

- Sequence number generation
 - Increment then use
 - With anti-replay enabled, check for rollover and send only if no rollover
 - With anti-replay disabled, still needs to increment and use but no rollover checking
- ICV calculation
 - ICV includes whole ESP packet except for authentication data field.
 - Implicit padding of ‘0’s between next header and authentication data is used to satisfy block size requirement for ICV algorithm
 - Not include the IP header.

ESP Transport Example

- SPI
- Sequence Number
- Payload (TCP Header and Data)
- Variable Length
- Padding (0-255 bytes)
- Pad Length
- Next Header
- Integrity Check Value

Inbound Packet Processing

- Sequence number checking
 - Anti-replay is used only if authentication is selected
 - Sequence number should be the first ESP check on a packet upon looking up an SA
 - Duplicates are rejected!

Anti-replay Feature

- Optional
- Information to enforce held in SA entry
- Sequence number counter - 32 bit for outgoing IPsec packets
- Anti-replay window
 - 32-bit
 - Bit-map for detecting replayed packets
Anti-replay Sliding Window

- Window should not be advanced until the packet has been authenticated
- Without authentication, malicious packets with large sequence numbers can advance window unnecessarily
 - Valid packets would be dropped!

Inbound Packet Processing...

- Packet decryption
 - Decrypt quantity [ESP payload, padding, pad length, next header] per SA specification
 - Processing (stripping) padding per encryption algorithm; In case of default padding scheme, the padding field SHOULD be inspected
 - Reconstruct the original IP datagram
- Authentication verification (option)

ESP Processing - Header Location...

- Transport mode IPv4 and IPv6

IPv4

- Orig IP hdr
- ESP hdr
- TCP Data
- ESP trailer
- ESP Auth

IPv6

- Orig IP hdr
- Orig ext hdr
- ESP hdr
- TCP Data
- ESP trailer
- ESP Auth

ESP Processing - Header Location...

- Tunnel mode IPv4 and IPv6

IPv4

- New IP hdr
- ESP hdr
- Orig IP hdr
- TCP Data
- ESP trailer
- ESP Auth

IPv6

- New IP hdr
- New ext hdr
- ESP hdr
- Orig ext hdr
- TCP Data
- ESP trailer
- ESP Auth