CSC/ECE 574 Computer and Network Security

Topic 8.2 Internet Key Management

Outline

- Key Management
 - Security Principles
- Internet Key Management
 - Manual Exchange
 - SKIP
 - Oakley
 - ISAKMP
 - IKE

Key Management

- Why do we need Internet key management
 - AH and ESP require encryption and authentication keys
- Process to negotiate and establish IPsec SAs between two entities

Security Principles

- Basic security principle for session keys
 - Compromise of a session key
 - Doesn’t permit reuse of the compromised session key.
 - Doesn’t compromise future session keys and long-term keys.

Security Principles (Cont’d)

- Perfect forward secrecy (PFS)
 - Compromise of current keys (session key or long-term key) doesn’t compromise past session keys.
 - Concern for encryption keys but not for authentication keys.
 - Not really “perfect” in the same sense as perfect secrecy for one-time pad.

Internet Key Management

- Manual key management
 - Mandatory
 - Useful when IPsec developers are debugging
 - Keys exchanged offline (phone, email, etc.)
 - Set up SPI and negotiate parameters
Internet Key Management (Cont’d)

- Automatic key management
 - Two major competing proposals
 - Simple Key Management for Internet Protocols (SKIP)
 - ISAKMP/OAKLEY
 - Photuris
 - Ephemeral D-H + authentication + Cookie
 - The first to use cookie to thwart DOS attacks
 - SKEME (extension to Photuris)
 - Oakley (RFC 2412)
 - ISAKMP (RFC 2408)
 - ISAKMP/OAKLEY → IKE (RFC 2409)

A Note about IKE

- IKE v2 was introduced in RFC 4306 (December 2005)
- IKE v2 does not interoperate with IKE v1
 - Both version can unambiguously run over the same UDP port
- IKE v2 combines the contents of previously separate documents
 - ISAKMP
 - IKE v1
 - DOI
 - NAT
 - ...

Automatic Key Management

- Key establishment and management combined
 - SKIP
- Key establishment protocol
 - Oakley
 - focus on key exchange
- Key management
 - Internet Security Association & Key Management Protocol (ISAKMP)
 - Focus on SA and key management
 - Clearly separated from key exchange.

SKIP

- Idea
 - IP is connectionless in nature
 - Using security association forces a pseudo session layer underneath IP
 - Proposal: use sessionless key establishment and management
 - Pre-distributed and authenticated D-H public key
 - Packet-specific encryption keys are included in the IP packets

SKIP (Cont’d)

Two types of keys:
1. KEK
2. Packet key

- Certificate repository
- Alice’s certificate
- Bob’s certificate
- K_p encrypted with KEK
- Payload encrypted with K_p

- KEK should be changed periodically
 - Minimize the exposure of KEK
 - Prevent the reuse of compromised packet keys
- SKIP’s approach
 - KEK = $h(K_{AB}, n)$, where h is a one-way hash function, K_{AB} is the the long term key between A and B, and n is a counter.
SKIP (Cont’d)

• Limitations
 – No Perfect Forward Secrecy
 • Can be modified to provide PFS, but it will lose the
 sessionless property.
 – No concept of SA; difficult to work with the
 current IPsec architecture
 • Not the standard, but remains as an alternative.

Oakley

• Oakley is a refinement of the basic Diffie-Hellman key exchange protocol.
• Why need refinement?
 – Resource clogging attack
 – Replay attack
 – Man-in-the-middle attack
 – Choice of D-H groups

Resource Clogging Attack

• Stopping requests is difficult
 – We need to provide services.
• Ignoring requests is dangerous
 – Denial of service attacks

Resource Clogging Attack (Cont’d)

• Counter measure
 – If we cannot stop bogus requests, at least we
 should know from where the requests are sent.
 – Cookies are used to thwart resource clogging
 attack
 • Thwart, not prevent

Requirements for cookie generation

• The cookie must depend on the specific
 parties.
 – Prevent an attacker from reusing cookies.
• Impossible to forge
 – Use secret values
• Efficient
• Cookies are also used for key naming
 – Each key is uniquely identified by the initiator’s
 cookie and the responder’s cookie.

• Cookie
 – Each side sends a pseudo-random number, the
 cookie, in the initial message, which the other side
 acknowledges.
 – The acknowledgement must be repeated in the
 following messages.
 – Do not begin D-H calculation until getting
 acknowledgement for the other side.
Replay Attack

- Counter measure
 - Use nonce

 1. Cookie exchange
 2. Later exchange
 3. Replay
 4. Busy computing

Man-In-The-Middle Attack

- Counter measure
 - Authentication
 - Depend on other mechanisms.
 - Pre-shared key.
 - Public key certificates.

Oakley Groups

- How to choose the DH groups?
 - 0 no group (placeholder or non-DH)
 - 1 MODP, 768-bit modulus
 - 2 MODP, 1024-bit modulus
 - 3 MODP, 1536-bit modulus
 - 4 EC2N over GF(2^{155})
 - 5 EC2N over GF(2^{185})

Ephemeral Diffie-Hellman

- Session key is computed on the basis of short-term DH public-private keys.
- Exchange of these short-term public keys requires authentication and integrity.
 - Digital signatures.
 - Keyed message digests.
- The only protocol known to support Perfect Forward Secrecy.

ISAKMP

- Oakley
 - Key exchange protocol
 - Developed to use with ISAKMP
- ISAKMP
 - Security association and key management protocol
 - Defines procedures and packet formats to establish, negotiate, modify, and delete security associations.
 - Defines payloads for security association, key exchange, etc.
ISAKMP Message

- Fixed format header
 - 64 bit initiator and responder cookies
 - Exchange type (8 bits)
 - Next payload type (8 bits)
 - Flags: encryption, commit, authentication, etc.
 - 32 bit message ID
 - Resolve multiple phase 2 SAs being negotiated simultaneously
 - Variable number of payloads
 - Each has a generic header with
 - Payload boundaries
 - Next payload type (possibly none)

ISAKMP Formats

- Phase 1
 - Establish ISAKMP SA to protect further ISAKMP exchanges
 - Or use pre-established ISAKMP SA
 - ISAKMP SA identified by initiator cookie and responder cookie
- Phase 2
 - Negotiate security services in SA for target security protocol or application.

ISAKMP Phases

- Disadvantage
 - Additional overhead due to 2 phases
- Advantages
 - Same ISAKMP SA can be used to negotiate phase 2 for multiple protocols
 - ISAKMP SA can be used to facilitate maintenance of SAs.
 - ISAKMP SA can simplify phase 2.

ISAKMP Domain Of Interpretation (DOI)

- DOI defines
 - Payload format
 - Exchange types
 - Naming conventions for security policies, cryptographic algorithms
- DOI for IPsec has been defined.

ISAKMP Exchange Types

- 0 none
- 1 base
- 2 identity protection
- 3 authentication only
- 4 aggressive
- 5 informational
- 6-31 reserved
- 32-239 DOI specific use
- 240-255 private use
ISAKMP Exchange Types

- Base exchange
 - Reveals identities
- Identity protection exchange
 - Protects identities at cost of extra messages.
- Authentication only exchange
 - No key exchange
- Aggressive exchange
 - Reduce number of message, but reveals identity
- Informational exchange
 - One-way transmission of information.

ISAKMP Payload Types

- 0 none
- 1 SA security association
- 2 P proposal
- 3 T transform
- 4 KE key exchange
- 5 ID identification
- 6 CERT certificate
- 7 CR certificate request

ISAKMP Payload Types

- 8 H hash
- 9 SIG signature
- 10 NONCE nonce
- 11 N notification
- 12 D delete
- 13 VID vendor ID
- 14-127 reserved
- 128-255 private use

ISAKMP Exchanges

Basic Exchange

1. I→R: SA; NONCE • Begin ISAKMP-SA negotiation
2. R→I: SA; NONCE • Basic SA agreed upon
3. I→R: KE; ID_R; AUTH • Key generated; Initiator id verified by responder
4. R→I: KE; ID_R; AUTH • Responder id verified by initiator; key generated; SA established

ISAKMP Exchanges (Cont’d)

Identity Protection Exchange

1. I→R: SA • Begin ISAKMP-SA negotiation
2. R→I: SA • Basic SA agreed upon
3. I→R: KE; NONCE • Key generated,
4. R→I: KE; NONCE • key generated,
5. I→R: ID_R; AUTH • Initiator id verified by responder
6. R→I: ID_R; AUTH • Responder id verified by initiator; SA established

Red messages: Payload encrypted after ISAKMP header
ISAKMP Exchanges (Cont’d)

Authentication Only Exchange

1. **I → R:** SA, NONCE
 - Begin ISAKMP-SA negotiation

2. **R → I:** SA, NONCE, IDk, AUTH
 - Basic SA agreed upon; Responder id verified by initiator

3. **I → R:** ID, AUTH
 - Initiator id verified by responder; SA established

Aggressive Exchange

1. **I → R:** SA, KE, NONCE, ID
 - Begin ISAKMP-SA negotiation and key exchange

2. **R → I:** SA, KE, NONCE, IDk, AUTH
 - Responder identity verified by responder; Key generated; Basic SA agreed upon;

3. **I → R:** AUTH
 - Initiator id verified by responder; SA established

Red messages: Payload encrypted after ISAKMP header

ISAKMP Exchanges (Cont’d)

Informational Exchange

1. **I → R:** N/D
 - Error or status notification, or deletion.

Red message: Payload encrypted after ISAKMP header

IKE Overview

- **IKE = ISAKMP + part of OAKLEY + part of SKEME**
 - ISAKMP determines
 - How two peers communicate
 - How these messages are constructed
 - How to secure the communication between the two peers
 - No actual key exchange
 - Oakley
 - Key exchange protocol
 - Combining these two requires a Domain of Interpretation (DOI)
 - RFC 2407

- **Several Modes**
 - Phase 1:
 - Main mode: identity protection
 - Aggressive mode
 - Phase 2:
 - Quick mode
 - Other modes
 - New group mode
 - Establish a new group to use in future negotiations
 - Not in phase 1 or 2.
 - Must only be used after phase 1
 - Informational exchanges
 - ISAKMP notify payload
 - ISAKMP delete payload

IKE Overview (Cont’d)

- **A separate RFC has been published for IKE**
 - RFC 2409

- **Request-response protocol**
 - Initiator
 - Responder

- **Two phases**
 - Phase 1: Establish an IKE (ISAKMP) SA
 - Essentially the ISAKMP phase 1
 - Bi-directional
 - Phase 2: Use the IKE SA to establish IPsec SAs
 - Key exchange phase
 - Directional

IPSEC Architecture Revisited

IPSec module 1 What to establish IPSec module 2

IKE SPD IKE SPD SAD IPSec SAD
IKE policies (How to establish the IPSec SAs)
1. Encryption algorithm; 2. Hash algorithm;

IPSEC Architecture Revisited (Cont’d)

A Clarification About PFS

• In RFC 2409:
 – When used in the memo Perfect Forward Secrecy (PFS) refers to the notion that compromise of a single key will permit access to only data protected by a single key.
 – The key used to protect transmission of data MUST NOT be used to derive any additional keys.
 – If the key used to protect transmission of data was derived from some other keying material, that material MUST NOT be used to derive any more keys.

• Is this consistent with what we discussed?

IKE Phase 1

• Four authentication methods
 – Digital signature
 – Authentication with public key encryption
 – The above method revised
 – Authentication with a pre-shared key

IKE Phase 1 (Cont’d)

• IKE Phase 1 goal:
 – Establish a shared secret SKEYID
 – With signature authentication
 • SKEYID = prf(Ni_b | Nr_b, g^xy)
 – With public key encryption
 • SKEYID = prf(hash(Ni_b | Nr_b), CKY-I | CKY-R)
 – With pre-shared key
 • SKEYID = prf(pre-shared-key, Ni_b | Nr_b)
 – Notations:
 • prf: keyed pseudo random function prf(key, message)
 • CKY-I/CKY-R: I’s (or R’s) cookie
 • Ni_b/Nr_b: the body of I’s (or R’s) nonce

IKE Phase 1 (Cont’d)

• Three groups of keys
 – Derived key for non-ISAKMP negotiations
 • SKEYID_d = prf(SKEYID, g^u | CKY-I | CKY-R | 0)
 – Authentication key
 • SKEYID_a = prf(SKEYID, SKEYID_d | g^u | CKY-I | CKY-R | 1)
 – Encryption key
 • SKEYID_e = prf(SKEYID, SKEYID_a | g^u | CKY-I | CKY-R | 2)

IKE Phase 1 (Cont’d)

• To authenticate the established key
 – Initiator generates
 • HASH_I = prf(SKEYID, g^u | g^v | CKY-I | CKY-R | SAI_b | ID_i_b)
 – Responder generates
 • HASH_R = prf(SKEYID, g^u | g^v | CKY-R | CKY-I | SAI_b | ID_r_b)
 – Authentication with digital signatures
 • HASH_I and HASH_R are signed and verified
 – Public key encryption or pre-shared key
 • HASH_I and HASH_R directly authenticate the exchange.
IKE Phase 1 Authenticated with Signatures

Main Mode

<table>
<thead>
<tr>
<th>Initiator</th>
<th>Responder</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDR, SA</td>
<td>HDR, SA</td>
</tr>
<tr>
<td>HDR, KE, Ni</td>
<td>HDR, KE, Nr</td>
</tr>
<tr>
<td>HDR*, IDi, [CERT,] SIG_I</td>
<td>HDR*, IDi, [CERT,] SIG_R</td>
</tr>
</tbody>
</table>

Aggressive Mode

<table>
<thead>
<tr>
<th>Initiator</th>
<th>Responder</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDR, SA, KE, Ni, IDi</td>
<td>HDR, SA, KE, Nr, IDir, [CERT,] SIG_I</td>
</tr>
</tbody>
</table>

Main Mode

<table>
<thead>
<tr>
<th>Initiator</th>
<th>Responder</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDR, SA</td>
<td>HDR, SA</td>
</tr>
<tr>
<td>HDR, KE, [HASH(1),] KE, <IDii_b>PubKey_r, <Ni_b>PubKey_r</td>
<td>HDR, KE, <IDir_b>PubKey_i, <Nr_b>PubKey_i</td>
</tr>
<tr>
<td>HDR*, HASH_I</td>
<td>HDR*, HASH_R</td>
</tr>
</tbody>
</table>

Aggressive Mode

<table>
<thead>
<tr>
<th>Initiator</th>
<th>Responder</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDR, SA, KE, [HASH(1),] KE, <IDii_b>PubKey_r, <Ni_b>PubKey_r</td>
<td>HDR, SA, KE, <IDir_b>PubKey_i, <Nr_b>PubKey_i, HASH_R</td>
</tr>
</tbody>
</table>

IKE Phase 1 Authenticated with Public Key Encryption

Main Mode

<table>
<thead>
<tr>
<th>Initiator</th>
<th>Responder</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDR, SA</td>
<td>HDR, SA</td>
</tr>
<tr>
<td>HDR, KE, [HASH(1),] KE, <IDii_b>PubKey_r, <Ni_b>PubKey_r</td>
<td>HDR, KE, <IDir_b>PubKey_i, <Nr_b>PubKey_i</td>
</tr>
<tr>
<td>HDR*, HASH_I</td>
<td>HDR*, HASH_R</td>
</tr>
</tbody>
</table>

Aggressive Mode

<table>
<thead>
<tr>
<th>Initiator</th>
<th>Responder</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDR, SA, KE, [HASH(1),] KE, <IDii_b>PubKey_r, <Ni_b>PubKey_r</td>
<td>HDR, <Nr_b>PubKey_i, <KE_b>Ke_r, <IDir_b>Ke_r</td>
</tr>
<tr>
<td>HDR*, HASH_I</td>
<td>HDR*, HASH_R</td>
</tr>
</tbody>
</table>

Observations

- Authenticated using public key encryption
 - No non-repudiation
 - No evidence that shows the negotiation has taken place.
 - More difficult to break
 - An attacker has to break both DH and public key encryption
 - Identity protection is provided in aggressive mode.
- Four public key operations
 - Two public key encryptions
 - Two public key decryptions

IKE Phase 1 Authenticated with A Revised Mode of Public Key Encryption

Main Mode

<table>
<thead>
<tr>
<th>Initiator</th>
<th>Responder</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDR, SA</td>
<td>HDR, SA</td>
</tr>
<tr>
<td>HDR, [HASH(1),] KE, <IDii_b>PubKey_r, <KE_b>Ke_i</td>
<td>HDR, <Nr_b>PubKey_i, <IDir_b>Ke_r</td>
</tr>
<tr>
<td>HDR*, HASH_I</td>
<td>HDR*, HASH_R</td>
</tr>
</tbody>
</table>
IKE Phase 1 Authenticated with A Revised Mode of Public Key Encryption

Aggressive Mode

<table>
<thead>
<tr>
<th>Initiator</th>
<th>Responder</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDR, SA, [HASH(I)]</td>
<td>HDR, SA, [HASH(R)]</td>
</tr>
<tr>
<td><Ni_b>PubKey_i, <KE_b>Ke_i, <IDii_b>Ke_i, <Cert_i_b>Ke_i</td>
<td><Nr_b>PubKey_i, <KE_b>Ke_r, <IDir_b>Ke_r, HASH_R</td>
</tr>
<tr>
<td>HDR, HASH_I</td>
<td>HDR, HASH_I</td>
</tr>
</tbody>
</table>

Further Details

\[Ne_i = \text{prf}(Ni_b, \text{CKY-I}) \]
\[Ne_r = \text{prf}(Nr_b, \text{CKY-R}) \]

- Ke_i and Ke_r are taken from Ne_i and Ne_r, respectively.

IKE Phase 1 Authenticated with Pre-Shared Key

Main Mode

<table>
<thead>
<tr>
<th>Initiator</th>
<th>Responder</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDR, SA, KE, Ni</td>
<td>HDR, SA, KE, Nr</td>
</tr>
<tr>
<td>HDR*, IDii, HASH_I</td>
<td>HDR*, IDir, HASH_R</td>
</tr>
</tbody>
</table>

IKE Phase 1 Authenticated with Pre-Shared Key (Cont’d)

- What provide the authentication?
- Why does it work?

IKE Phase 1 Authenticated with Pre-Shared Key

Aggressive Mode

<table>
<thead>
<tr>
<th>Initiator</th>
<th>Responder</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDR, SA, KE, Ni, IDii</td>
<td>HDR, SA, KE, Nr, IDir, HASH_R</td>
</tr>
<tr>
<td>HDR, HASH_I</td>
<td>HDR, HASH_R</td>
</tr>
</tbody>
</table>

IKE Phase 2 -- Quick Mode

- Not a complete exchange itself
 - Must be bound to a phase 1 exchange
- Used to derive keying materials for IPsec SAs
- Information exchanged with quick mode must be protected by the ISAKMP SA
- Essentially a SA negotiation and an exchange of nonce
 - Generate fresh key material
 - Prevent replay attack
IKE Phase 2 -- Quick Mode (Cont’d)

- Basic Quick Mode
 - Refresh the keying material derived from phase 1
- Quick Mode with optional KE payload
 - Transport additional exponentiation
 - Provide PFS

IKE Phase 2 -- Quick Mode (Cont’d)

<table>
<thead>
<tr>
<th>Initiator</th>
<th>Responder</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDR*, HASH(1), SA, Ni, [KE], [IDci, IDcr]</td>
<td>HDR*, HASH(2), SA, Nr, [KE], [IDci, IDcr]</td>
</tr>
<tr>
<td>HDR*, HASH(3)</td>
<td></td>
</tr>
</tbody>
</table>

IKE Phase 2 -- Quick Mode (Cont’d)

If PFS is not needed, and KE payloads are not exchanged, the new keying material is defined as

\[\text{KEYMAT} = \text{prf(SKEYID}_d, \text{protocol | SPI | Ni}_b | Nr}_b) \]

If PFS is desired and KE payloads were exchanged, the new keying material is defined as

\[\text{KEYMAT} = \text{prf(SKEYID}_d, \text{prf}(\text{g(qm)}^{x}_y | \text{protocol | SPI | Ni}_b | Nr}_b) \]

where \(g(qm)^x \) is the shared secret from the ephemeral Diffie-Hellman exchange of this Quick Mode.