Mapping ER Diagrams to Relations

- **Regular Entity Type**
 - Create a relation R
 - Include simple attributes and simple components of composite attributes
 - Choose one of the key attributes as the primary key
 - Multi-valued attributes:
 - Don’t include in R
 - To be discussed later.

- **Weak Entity Type E**
 - Include all simple attributes and simple components of composite attributes.
 - Include the primary key of the relation corresponding to the owner entity type of E.

Exercise

```
Employee
| SSN |
Dependent
| Name | Sex |
Dependent_of
| Host |
```

- **Binary 1:1 relationship R**
 - Suppose S and T are the relations corresponding to the entity types participating R
 - Choose either S (or T), and include the primary of T (or S) as foreign key.
 - Include the simple attributes and the simple components of composite attributes of R.
 - Better to choose the one with total participation in R.
Exercise

Mapping ER Diagrams to Relations (Cont’d)

- Binary 1:N relationship R
 - Suppose S and T are the relations corresponding to the entity types participating R, and S is the N-side.
 - Choose either S, and include the primary key of T as foreign key in S.
 - Include simple attributes and simple components of composite attributes in S.

Exercise

Mapping ER Diagrams to Relations (Cont’d)

- Multi-valued attribute A
 - Suppose A is an attribute of the entity type corresponding relation S.
 - Create a relation R
 - Include an attribute corresponding to A and the primary key K of S as a foreign key.
 - The primary key of R is the combination of A and K.
Exercise

Mapping EER Diagrams to Relations
- Subclass-superclass relationships:
 - Commonly four options
 - Assume there are a super-class C and m subclasses \(\{S_1, S_2, \ldots, S_m\} \).
 - Assume the attributes of C are \(\{k, a_1, \ldots, a_n\} \), and k is the key attribute.

Mapping EER Diagrams to Relations (Cont’d)
- The n-ary relationship R
 - Create a new relation S
 - Include the primary keys of all the relations corresponding to the participating entity types in R. They form the primary key of S
 - Include the simple attributes and the simple components of composite attributes of R.

Exercise

Mapping EER Diagrams to Relations (Cont’d)
- Option 1
 - Create a relation L for C with all its attributes, and have k as the primary key.
 - For each subclass Si, create a relation Li with attributes k and all the attributes of Si. The primary key of Si is k.
 - Intuition: keep the attributes of the individual classes separately.

Mapping EER Diagrams to Relations (Cont’d)
- Option 2
 - For each subclass Si, create a relation Li with all the attributes of C and all the attributes of Si. The primary key of Si is k.
 - Intuition: replicate the attributes of the super-class in subclasses.
Mapping EER Diagrams to Relations (Cont’d)

Option 3
- Create a single relation with the attributes of the super-class and all the subclasses plus a type attribute.
- The type attribute is used to indicate the subclass to which each tuple belongs.
- Intuition:
 - store all classes together.
 - For disjoint specialization.

Option 4
- Create a single relation with the attributes of the super-class and all the subclasses plus m type attributes.
- The type attributes boolean attributes indicating whether the tuple belongs to the corresponding subclasses.
- Intuition:
 - Store all classes together.
 - For overlapping specialization.

Mapping EER Diagrams to Relations (Cont’d)

Multiple inheritance:
- all superclasses have the same key

Design Guidelines

- Have schemas that are easy to explain.
- Keep different entities and relationships apart where possible—at least in base relations
- Prevent anomalies in
 - insertion
 - deletion
 - modification

Exercise

<table>
<thead>
<tr>
<th>Employee</th>
<th>SSN</th>
<th>Bdate</th>
<th>DNumber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith</td>
<td>111-22-3333</td>
<td>01/11/71</td>
<td>1</td>
</tr>
<tr>
<td>Tom</td>
<td>222-33-4444</td>
<td>02/14/68</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department</th>
<th>DNumbren</th>
<th>Mgr/SSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research</td>
<td>1</td>
<td>111-22-3333</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Employee</th>
<th>SSN</th>
<th>Bdate</th>
<th>DNumber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith</td>
<td>111-22-3333</td>
<td>01/11/71</td>
<td>1</td>
</tr>
<tr>
<td>Tom</td>
<td>222-33-4444</td>
<td>02/14/68</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department</th>
<th>DNumbren</th>
<th>Mgr/SSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research</td>
<td>1</td>
<td>111-22-3333</td>
</tr>
</tbody>
</table>

EMPLOYEE

111-22-3333

<table>
<thead>
<tr>
<th>Name</th>
<th>SSN</th>
<th>Bdate</th>
<th>DNumber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith</td>
<td>111-22-3333</td>
<td>01/11/71</td>
<td>1</td>
</tr>
<tr>
<td>Tom</td>
<td>222-33-4444</td>
<td>02/14/68</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department</th>
<th>DNumbren</th>
<th>Mgr/SSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research</td>
<td>1</td>
<td>111-22-3333</td>
</tr>
</tbody>
</table>
Design Guidelines (Cont’d)

- Avoid NULL values in base relations, although they may occur in views. NULLs should apply rarely and have well-defined meaning:
 - Not applicable
 - unknown
 - absent (known but absent)
- Prevent spurious tuples

Registration

<table>
<thead>
<tr>
<th>StudentID</th>
<th>Name</th>
<th>Course</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Smith</td>
<td>CSC101</td>
<td>V 150</td>
</tr>
<tr>
<td>2</td>
<td>John</td>
<td>CSC101</td>
<td>V 150</td>
</tr>
</tbody>
</table>

Reasoning With FDs: 1

FDs can be inferred from other FDs.

- Let F be a set of FDs
- X → Y is inferred from F if X → Y holds in every relation r that satisfies F
 - (notation: F |= X → Y)
- F+ is the set of all FDs that can be inferred from F
 - Called the closure of F.

Functional Dependencies

- A constraint
- R is treated as a set of attributes below
 - For subsets X and Y of R, X → Y means that
 - For all relations r of R, (for all t1, t2: t1, t2 in r
 ⇒ (t1[X] = t2[X] ⇒ t1[Y] = t2[Y]))
- FDs depend on R and its meaning, not on r.

Reasoning With FDs: 2

FDs can be inferred based on

- Their formal definition
- Armstrong’s rules:
 - Reflexivity: If X contains Y, then X → Y
 - Augmentation: X → Y | = XZ → YZ
 - Transitivity: {X → Y, Y → Z} | = X → Z
- which are provably complete.
Reasoning With FDs: 3

Additional Inference Rules:
- Decomposition rule
 \[X \rightarrow YZ \Rightarrow X \rightarrow Y \]
- Union rule
 \[X \rightarrow Y, X \rightarrow Z \Rightarrow X \rightarrow YZ \]
- Pseudo-transitive rule
 \[X \rightarrow Y, WY \rightarrow Z \Rightarrow WX \rightarrow Z \]

Minimal Cover (Cont’d)

- A minimal cover of a set F of FDs is a minimal set of FDs that is equivalent to F.
- Always exist.
- Algorithm 14.2 in textbook
 - Step 1.
 - Step 2. Change the FDs to those with one attribute on the right-hand side.
 - Step 3. Try to remove attributes from the left-hand sides of FDs.
 - Step 4. Try to remove redundant FDs.

Find Additional FDs

- Given a set F of FDs,
 - For each set of attributes X that appears as a left-hand side of an FD in F,
 - Determine the set \(X^+ \) of attributes that are functionally determined by X based on F.
 - \(X^+ \): the closure of X under F.
 - Algorithm to compute \(X^+ \) under F:
 - \(X^0 \leftarrow X \)
 - Repeat
 - Old \(X^+ \leftarrow X^+ \)
 - For each FD \(Y \rightarrow Z \) in F do
 - If \(X^+ \supseteq Y \) then \(X^+ = X^+ \cup Z \)
 - Until \(X^+ = \text{old}X^+ \)

Minimal Cover

- Equivalence of sets of FDs
 - Two sets of functional dependencies E and F are equivalent if \(E^+ = F^+ \).
 - A set F of FDs is minimal iff
 - Every FD in F has a single attribute for the right-hand side.
 - We cannot replace any \(X \rightarrow A \) with \(Y \rightarrow A \), where \(Y \subseteq X \), and still have a set of FDs equivalent to F.
 - We cannot remove any FD from F and still have a set of FDs equivalent to F.

Normalization

- A process of cleaning up a schema by decomposing the relations in it
 - to remove various anomalies
 - but additional considerations apply
 - A schema is in some normal form if it satisfies the specified mathematical properties and thereby avoids some potential anomalies

Normalization (Cont’d)

- Algorithm 14.2 in textbook
 - Step 1.
 - Step 2. Change the FDs to those with one attribute on the right-hand side.
 - Step 3. Try to remove attributes from the left-hand sides of FDs.
 - Step 4. Try to remove redundant FDs.

Find Additional FDs

- Given a set F of FDs,
 - For each set of attributes X that appears as a left-hand side of an FD in F,
 - Determine the set \(X^+ \) of attributes that are functionally determined by X based on F.
 - \(X^+ \): the closure of X under F.
 - Algorithm to compute \(X^+ \) under F:
 - \(X^0 \leftarrow X \)
 - Repeat
 - Old \(X^+ \leftarrow X^+ \)
 - For each FD \(Y \rightarrow Z \) in F do
 - If \(X^+ \supseteq Y \) then \(X^+ = X^+ \cup Z \)
 - Until \(X^+ = \text{old}X^+ \)

Minimal Cover

- Equivalence of sets of FDs
 - Two sets of functional dependencies E and F are equivalent if \(E^+ = F^+ \).
 - A set F of FDs is minimal iff
 - Every FD in F has a single attribute for the right-hand side.
 - We cannot replace any \(X \rightarrow A \) with \(Y \rightarrow A \), where \(Y \subseteq X \), and still have a set of FDs equivalent to F.
 - We cannot remove any FD from F and still have a set of FDs equivalent to F.

Find Additional FDs

- Given a set F of FDs,
 - For each set of attributes X that appears as a left-hand side of an FD in F,
 - Determine the set \(X^+ \) of attributes that are functionally determined by X based on F.
 - \(X^+ \): the closure of X under F.
 - Algorithm to compute \(X^+ \) under F:
 - \(X^0 \leftarrow X \)
 - Repeat
 - Old \(X^+ \leftarrow X^+ \)
 - For each FD \(Y \rightarrow Z \) in F do
 - If \(X^+ \supseteq Y \) then \(X^+ = X^+ \cup Z \)
 - Until \(X^+ = \text{old}X^+ \)

Minimal Cover

- Equivalence of sets of FDs
 - Two sets of functional dependencies E and F are equivalent if \(E^+ = F^+ \).
 - A set F of FDs is minimal iff
 - Every FD in F has a single attribute for the right-hand side.
 - We cannot replace any \(X \rightarrow A \) with \(Y \rightarrow A \), where \(Y \subseteq X \), and still have a set of FDs equivalent to F.
 - We cannot remove any FD from F and still have a set of FDs equivalent to F.

Find Additional FDs

- Given a set F of FDs,
 - For each set of attributes X that appears as a left-hand side of an FD in F,
 - Determine the set \(X^+ \) of attributes that are functionally determined by X based on F.
 - \(X^+ \): the closure of X under F.
 - Algorithm to compute \(X^+ \) under F:
 - \(X^0 \leftarrow X \)
 - Repeat
 - Old \(X^+ \leftarrow X^+ \)
 - For each FD \(Y \rightarrow Z \) in F do
 - If \(X^+ \supseteq Y \) then \(X^+ = X^+ \cup Z \)
 - Until \(X^+ = \text{old}X^+ \)

Find Additional FDs

- Given a set F of FDs,
 - For each set of attributes X that appears as a left-hand side of an FD in F,
 - Determine the set \(X^+ \) of attributes that are functionally determined by X based on F.
 - \(X^+ \): the closure of X under F.
 - Algorithm to compute \(X^+ \) under F:
 - \(X^0 \leftarrow X \)
 - Repeat
 - Old \(X^+ \leftarrow X^+ \)
 - For each FD \(Y \rightarrow Z \) in F do
 - If \(X^+ \supseteq Y \) then \(X^+ = X^+ \cup Z \)
 - Until \(X^+ = \text{old}X^+ \)

Keys

- S is a superkey of \(R = \{ A_1, ..., A_n \} \) iff
 - \(R \) contains \(S \)
 - (forall \(t_1, t_2: t_1[S] = t_2[S] \Rightarrow ?) \)
- K is a (candidate) key or identifier of \(R \) iff
 - K is a superkey
 - (forall \(L: K \) contains \(L \Rightarrow ?) \)
- The primary key is one of the candidate keys.
Achtung!
Prime attribute
■ member of any key
■ not just the primary key

Full FD
■ X → Y is a full FD if
 ● (forall W: (X contains W & W → Y) ⇒ X = W)
■ X → Y is a partial FD, otherwise

1NF
■ Attributes must be atomic:
 ● they can be chars, ints, strings
 ● they can’t be
 ■ tuples
 ■ sets
 ■ relations
 ■ composite
 ■ multivalued

2NF
■ R is in 2NF if every nonprime attribute is fully functionally dependent on every key of R
■ Note that every attribute must be functionally dependent on every key (by definition of a key)

Obtaining 1NF
1NF is obtained by
■ Splitting composite attributes
■ splitting the relation and propagating the primary key to remove multivalued attributes

Obtaining 2NF
■ If a nonprime attribute is dependent only on a proper part of a key, then we take the given attribute as well as the key attributes that determine it and move them all to a new relation
■ We can bundle all attributes determined by the same subset of the key as a unit
Exercise

3NF: Alternative Definition
- R is in 3NF if every nonprime attribute of R
 - fully functionally dependent on every key of R, and
 - nontransitively dependent on every key of R.

Obtaining 3NF
- Split off the attributes in the FD that causes trouble and move them, so there are two relations for each such FD
- The determinant of the FD remains in the original relation

Transitive Dependency
- X \rightarrow Y is a transitive dependency if
 - (exists Z: Z is not contained in any key of R & X \rightarrow Z and Z \rightarrow Y)

Exercise
BCNF

R is in Boyce-Codd Normal Form iff
- if $X \rightarrow A$ then
 - X is a superkey of R
- more restrictive than 3NF
 - preferable—has fewer anomalies

Universal Relation: 1

- A universal relation is a single giant relation containing the entire database
 - has all attributes (renamed to be unique)
 - has enough tuples with NULL values as appropriate
 - not used in practice
 - only a theoretical construct!

Obtaining BCNF

- As usual, split the schema to move the attributes of the troublesome FD to another relation, leaving its determinant in the original so they remain connected
 - not always attainable

Universal Relation: 2

- One way to think about DB design is to imagine that we begin with the universal relation and normalize the schema to whatever level we like
 - theoretically interesting
 - partially usable
 - should not be the only tool in one’s DB design

Exercise

```
Student   Course   Instructor
---------   -------   --------
        |        |          
        |        |
```