O0oOoooooooooooooooooodoogogogn

CSC 742
Database M anagement Systems

Topic #14: Concurrency Control
— 2 Phase Locking

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 1

OJOoooooooodooooooooogoooooooog

Locks

Locks are objects that describe the usage status of a
dataitem
m A dataitem may be
+ arecord
+ afield
+ apage
+ anindex
+ atable
+ thewhole DB

m Granularity determines concurrency and overhead (hence a
trade-off).

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 2

OJOoooooooodooooooooogoooooooog

Kinds of Locks

m Binary locks:

+ Conceptually, each dataitem x needs alock
+ Two operétions:
+ lock(x)
+ unlock(x)
+ Must be atomic
+ Gives mutex but restrictive
« Implementation
+ Lock table: Storesthe active locks
+ Lock manager: maintain lock table

Spring 2002 CSC 742: DBMS by Dr. Peng Ning

OJOoooooooodooooooooogoooooooog

Use Binary Lock for Transactions

m A transaction T
+ Lock(x) before read(x) or write(x)
+ Unlock(x) after all read(x) and write(x) are completed
+ Will not issue lock(x) if it already has the lock on x
+ Will not unlock(x) unless it already has the lock on x.
m Question:
+ What if no transaction write(x)?

Spring 2002 CSC 742: DBMS by Dr. Peng Ning

OJOoooooooodooooooooogoooooooog

Kinds of Locks (Cont’ d)

m Multimode
« Intuition: distinguish locks for read(x) and
write(x)
» shared-lock(x) read(x): multiple transactions
can read x concurrently.

« exclusive-lock(x) write(x): only one transaction
can write X at each time.

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 5

OJOoooooooodooooooooogoooooooog

Use Multimode Locks

m A transaction T
+ Read lock(x) or write_lock(x) before read(x)
+ Write_lock(x) before write(x)
+ Unlock(x) after all read(x) and write(x) are completed
+ Will not issue read_lock(x) if it already has aread lock

on X
+ Will not issue write_lock(x) if it already has awrite
lock on x
+ Will not unlock(x) unless it already has aread or write
lock on x.
Spring 2002 CSC 742: DBMS by Dr. Peng Ning 6

OJOoooooooodooooooooogoooooooog

Lock Conversion

m Lock conversion:
« can be upgraded (read to write)
« or downgraded (write to read)

Spring 2002 CSC 742: DBMS by Dr. Peng Ning

OJOoooooooodooooooooogoooooooog

Does locking guarantee serializability?

T1 T2
Read_lock(Y);
Read_item(Y);
Unlock(Y);
Read_lock(X);
. Read_item(X);
Time Unlock(X);
Write lock(Y);
Read_item(Y);
Y:=X+Y;
Write_item(Y);
M Unlock(Y);
Write lock(X);
Read_item(X);
X:=X+Y:
Write_item(X);
Unlock(X);
Spring 2002 CSC 742: DBMS by Dr. Peng Ning

Serialization
Graph?

OJOoooooooodooooooooogoooooooog

Two-Phase Locking

Moral: can’'t release locks too soon

m 2PL: All locking operations precede the

first unlock operation.

« growing phase
+ shrinking phase
m Guarantees serializability, but can lead to

deadlock

Spring 2002

CSC 742: DBMS by Dr. Peng Ning

OJOoooooooodooooooooogoooooooog

Are these transactions using 2PL ?

T1 T2 T3 T4
Read_lock(Y); Read_lock(X); Read_lock(Y); Read_lock(X);
Read_item(Y); Read_item(X); Read_item(Y); Write lock(Y);
Unlock(Y); Unlock(X); Write lock(X); Read_item(X);
Write lock(X); | | Write_lock(Y); Unlock(Y); Read_item(Y);
Read_item(X); || Read_item(Y); Read_item(X); Y:=X+Y;
X:=X+Y: Y:=X+Y; X:=X+Y: Write_item(Y);
Write_item(X); | | Write_item(Y); Write_item(X); Unlock(X);
Unlock(X); Unlock(Y); Unlock(X); Unlock(Y);

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 10

OJOoooooooodooooooooogoooooooog

Basic 2PL

m Rules for basic 2PL scheduler

« For any operation p,(x) (p isread or write), test if
p_lock;(x) conflicts with some ¢_lock;(x) that is already
set. If o, it delays p,(x) until it can set p_locki(x). If
not, set p_lock;(x).

+ No concurrent access to the same item.

+ Once the scheduler has set p_lock;(x), it may not
release it at least until p;(x) has been performed.

+ Further guarantee no concurrent access.

+ Once the scheduler has released a lock for Ti, it may
not obtain any more locks for Ti.

+ Two phaserule

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 11

OJOoooooooodooooooooogoooooooog

2PL

m 2PL guarantees serializability.

m Deadlock
T1 T2 T1
Read_lock(Y);
Read_item(Y);
Time Read_lock(X);
Read_item(X);
Write_lock(X); T2
v ol Write lock(Y);
Spring 2002 CSC 742: DBMS by Dr. Peng Ning 12

OJOoooooooodooooooooogoooooooog

Conservative 2PL

m Conservative or static 2PL
« Obtain all locks before any operation

+ Make transaction wait (without any lock) if not
all the locks can be obtained.

« No deadlock: If T iswaiting for alock held by
T, then T has no lock.

+ Disadvantage: you have to know what locks a
transaction needs
+ How to get Read set and write set?

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 13

OJOoooooooodooooooooogoooooooog

Strict 2PL

m Strict 2PL

o Release all locks at once when the
transaction commits or aborts

& ensures strict schedules
« but can deadlock

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 14

OJOoooooooodooooooooogoooooooog

Deadlock Prevention

m Pessimistic: prevent deadlock from even
becoming possible by restricting access
when Ti tries to get an element locked by Tj

m Deadlock prevention using timestamps (TS)
« An older transaction has smaller TS.
+ Two variations:
+Wait-die
+ Wound-wait

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 15

OJOoooooooodooooooooogoooooooog

Deadlock Prevention (Cont’ d)

m Suppose Ti triesto lock x but is not able to
because x is locked by Tj with a conflicting lock.

<+ wait-die:

o If TS(Ti) < TY(Tj) then wait Ti

¢+ else abort Ti and restart with same time
+ Old transactions are allowed to wait.
+ How can wait-die prevent deadlock?

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 16

OJOoooooooodooooooooogoooooooog

Deadlock Prevention (Cont’ d)

m Suppose Ti triesto lock x but is not able to
because x is locked by Tj with a conflicting lock.

<+ Wwound-wait:

o If TS(Ti) < TY(Tj) abort Tj and restart with
some timestamp,

¢ else Ti wait
+ Young transactions are allowed to wait.
+ How can wound-wait prevent deadlock?

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 17

OJOoooooooodooooooooogoooooooog

Deadlock Prevention (Cont’ d)

m Prevent deadlock by Limiting Waiting

+ No waiting: abort transaction
immediately if lock not obtained

+ Cautious waiting: abort transaction only
If current lock holder isitself blocked

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 18

OJOoooooooodooooooooogoooooooog

Deadlock Detection

m Optimistic strategy

m Detect acyclein waits-for graph

m Choose a victim transaction

m Abort it thereby removing the deadlock

m Potentially unfair: the samevictimis
repeatedly chosen

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 19

OJOoooooooodooooooooogoooooooog

Deadlock Detection

m Wait-for Graph
+ One node for each transaction
e Anedgefrom Ti to Tj if Ti iswaiting to
lock x that is currently locked by Tj.
+ Cycle means deadlock.

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 20

10

OJOoooooooodooooooooogoooooooog

T1 T2

Read_lock(Y);
Read_item(Y);

Time Read_lock(X);

Read_item(X);
Write lock(X);

v | Write lock(Y);

Spring 2002 CSC 742: DBMS by Dr. Peng Ning

T1

T2

21

OJOoooooooodooooooooogoooooooog

Multiverson 2PL

m Basic idea

+ Maintain up to two versions of each data item x.

+ Each x must have one committed version, supplied to
transactions that read x.

¢ Create anew version when T needs to write x

+ Once T that writes x is ready to commit, it must obtain
acertify lock on al itemsthat it currently holds write
locks on before it can commit.

+ To install new versions.

Spring 2002 CSC 742: DBMS by Dr. Peng Ning

11

OJOoooooooodooooooooogoooooooog

Multi-version 2PL (Cont’ d)

m Lock compatibility tables

o 2PL
Read Write
Read Yes No
Write | No No

o Multi-version 2PL

Read | Write | Certify
Read |Yes Yes No
Write | Yes No No
Certify | No No No
Spring 2002 CSC 742: DBMS by Dr. Peng Ning

What do we gain
via multi-version
2PL?

23

OJOoooooooodooooooooogoooooooog

|s deadlock possible in multi-
version 2PL?

T1

T2

Read_lock(Y);
Read_item(Y);

Write lock(X);

Certify_lock(X);

Read_lock(X);
Read_item(X);

Write lock(Y);

Certify_lock(Y);

Spring 2002 CSC 742: DBMS by Dr. Peng Ning

24

12

OJOoooooooodooooooooogoooooooog

Multi-granularity locking

m Granularity: the size of adataitem
« Database
« Database file
« Disk block
+ Relation
o Tuple

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 25

OJOoooooooodooooooooogoooooooog

Multi-granularity locking (Cont’ d)

m Transaction 1: update 75% of thetuplesin
relation Employee.

m Transaction 2: update 1 tuplein relation
Employee.

m How should we set the granularity of data
items?
o Coarse: less concurrency
+ Fine: more locks

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 26

13

OJOoooooooodooooooooogoooooooog

Multi-granularity locking (Cont’ d)

m Basicidea
« Support multiple granularities.

DB

f1 \f2
b/ \b b/ \b

ANYANN AN AN

M2 -+ T Fint ... Ty M1 -+ Taxk Fime o Tami

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 27

OJOoooooooodooooooooogoooooooog

DB

I

f1l f2
bll e bln b21 e b2m
g o Taai Fin1 ... T M1 -+ To Pt -+ Tim

T1: 1 want to read lock(r111). Isthere any conflicting lock?

T2: 1 want to read_lock(f1). Isthere any conflicting lock?

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 28

14

OJOoooooooodooooooooogoooooooog

Multi-granularity locking (Cont’ d)

m Solution to reducing search for conflicting locks

« Intention lock:

+ For the nodes along the path from the root to the
item of choice (excluding the final node)

+ Indicate what types of lock T wantsto obtain for the
current node’ s descendants

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 29

OJOoooooooodooooooooogoooooooog

Multi-granularity locking (Cont’ d)

m |ntention locks:

+ Intention-shared (1S): a shared lock will be requested
on some descendants

+ Intention-exclusive (1X): an exclusive lock will be
requested on some descendants

+ Shared-intension-exclusive (SIX): the current node is
locked in shared mode, but an exclusive lock will be
requested on some descendants.

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 30

15

OJOoooooooodooooooooogoooooooog

DB

f1 \f2
N
by .. by, b21/ \ By
NN
T1: 1 want to read (r111).
T2: | want to write (r111).

T3: | want to go through the Employee relation stored
in f1 and update the tuples with Salary > 30000.

What locks will be requested?

Spring 2002 CSC 742: DBMS by Dr. Peng Ning

31

OJOoooooooodooooooooogoooooooog

Compatibility matrix for multi-
granularity locking

IS IX S SIX X

Spring 2002 CSC 742: DBMS by Dr. Peng Ning

32

16

OJOoooooooodooooooooogoooooooog

Multi-granularity locking protocol

1. Thelock compatibility matrix must be adhered to.
2. Theroot of the tree must be locked first, in any mode.

3. A nodeN can belocked by T inSor ISonly if the parent
node is already locked by T in1Sor IX.

4. A nodeN canbelocked by T in X, IX, or SIX mode
only if the parent isalready locked by T inI1X or SIX
mode.

5. T canlock anodeonly if it has not unlocked any node
(2-phase rule).

6. T canunlock anode N only if none of the children of N
arelocked by T (2-phase rule).

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 33

OJOoooooooodooooooooogoooooooog

Phantom problem

m Phantom problem occurs when there are
Insertions.

+ When a new record being inserted by T satisfies
a condition that a set of records accessed by T’
must satisfy.

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 34

17

OJOoooooooodooooooooogoooooooog

Accounts ASsets
Account# | Location Balance Location Balance
111 Raleigh 100 Raleigh 100
222 Apex 200 Apex 500
333 Apex 300
What' sthe Result?
T1 T2
What' swrong?
Read(Accountg111]);
Read(Accountq222]);
Read(Accountq 333));
Insert(Accounts[444,
Raleigh, 100])
Compute assetJ Raleigh;
Compute asset§ Apex];
v | Write(Assets[Raleigh]);
write(AssetgApex]);

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 35
=
- Phantom problem (Cont’d)
E
5 m Solutions
D -
= + Index locking
E + Predicate locking
O
O
O
J
O
O
O
O
O
O
O
O
|
S Spring 2002 CSC 742: DBMS by Dr. Peng Ning 36

18

OJOoooooooodooooooooogoooooooog

Optimistic Concurrency Control

m Three phases of atransaction T
« Read phase: T reads data, updates local copies

« Validation phase: check to ensure that
serializability will not be violated if the updates
are applied to the DB

« Write phase: if valid, write to DB
m Basic idea: do all checks at once.
m write-set(T): itemswrittenby T
m read-set(T): itemsread by T

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 37

OJOoooooooodooooooooogoooooooog

Optimistic Protocol

m Validate Ti w.r.t. any Tj that committed or is
being validated

+ Tj completed its write phase before Ti began its read
phase

+ Serial transactions

« Ti startsits write phase after Tj completes its write
phase, and read _set(Ti)nwrite_set(Tj) = .

+ All possible conflicting pairs of operations are from
TjtoTi.

« Tj completed its read phase before Ti completes its read
phase, read _set(Ti)nwrite_set(Tj) =0, and
write_set(Ti)nwrite_set(Tj) = U.

+ All possible conflicting pairs of operations are from
TjtoTi.

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 38

19

