
1

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 1

CSC 742
Database Management Systems

Topic #14: Concurrency Control

– 2 Phase Locking

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 2

Locks

Locks are objects that describe the usage status of a
data item

� A data item may be
� a record
� a field
� a page
� an index
� a table
� the whole DB

� Granularity determines concurrency and overhead (hence a
trade-off).

2

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 3

Kinds of Locks
� Binary locks:

� Conceptually, each data item x needs a lock
� Two operations:

� lock(x)
� unlock(x)
� Must be atomic

� Gives mutex but restrictive
� Implementation

� Lock table: Stores the active locks
� Lock manager: maintain lock table

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 4

Use Binary Lock for Transactions

� A transaction T
� Lock(x) before read(x) or write(x)
� Unlock(x) after all read(x) and write(x) are completed
� Will not issue lock(x) if it already has the lock on x
� Will not unlock(x) unless it already has the lock on x.

� Question:
� What if no transaction write(x)?

3

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 5

Kinds of Locks (Cont’d)
� Multimode

� Intuition: distinguish locks for read(x) and
write(x)

� shared-lock(x) read(x): multiple transactions
can read x concurrently.

� exclusive-lock(x) write(x): only one transaction
can write x at each time.

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 6

Use Multimode Locks
� A transaction T

� Read_lock(x) or write_lock(x) before read(x)
� Write_lock(x) before write(x)
� Unlock(x) after all read(x) and write(x) are completed
� Will not issue read_lock(x) if it already has a read lock

on x
� Will not issue write_lock(x) if it already has a write

lock on x
� Will not unlock(x) unless it already has a read or write

lock on x.

4

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 7

Lock Conversion
� Lock conversion:

� can be upgraded (read to write)
� or downgraded (write to read)

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 8

Does locking guarantee serializability?

Read_lock(Y);
Read_item(Y);
Unlock(Y);

Wr ite_lock(X);
Read_item(X);
X:=X+Y:
Wr ite_item(X);
Unlock(X);

Read_lock(X);
Read_item(X);
Unlock(X);
Wr ite_lock(Y);
Read_item(Y);
Y:=X + Y;
Wr ite_item(Y);
Unlock(Y);

Time

T1 T2

Serialization
Graph?

5

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 9

Two-Phase Locking

Moral: can’ t release locks too soon
� 2PL: All locking operations precede the

first unlock operation.
� growing phase
� shrinking phase

� Guarantees serializability, but can lead to
deadlock

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 10

Read_lock(Y);
Read_item(Y);
Unlock(Y);
Wr ite_lock(X);
Read_item(X);
X:=X+Y:
Wr ite_item(X);
Unlock(X);

Read_lock(X);
Read_item(X);
Unlock(X);
Wr ite_lock(Y);
Read_item(Y);
Y:=X + Y;
Wr ite_item(Y);
Unlock(Y);

T1 T2
Read_lock(Y);
Read_item(Y);
Wr ite_lock(X);
Unlock(Y);
Read_item(X);
X:=X+Y:
Wr ite_item(X);
Unlock(X);

Read_lock(X);
Wr ite_lock(Y);
Read_item(X);
Read_item(Y);
Y:=X + Y;
Wr ite_item(Y);
Unlock(X);
Unlock(Y);

T3 T4

Are these transactions using 2PL?

6

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 11

Basic 2PL
� Rules for basic 2PL scheduler

� For any operation pi(x) (p is read or write), test if
p_locki(x) conflicts with some q_lockj(x) that is already
set. If so, it delays pi(x) until it can set p_locki(x). If
not, set p_locki(x).

� No concurrent access to the same item.
� Once the scheduler has set p_locki(x), it may not

release it at least until pi(x) has been performed.
� Further guarantee no concurrent access.

� Once the scheduler has released a lock for Ti, it may
not obtain any more locks for Ti.

� Two phase rule

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 12

2PL
� 2PL guarantees serializability.
� Deadlock

Read_lock(Y);
Read_item(Y);

Wr ite_lock(X);
…

Read_lock(X);
Read_item(X);

Wr ite_lock(Y);
…

T1 T2

Time

T1

T2

7

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 13

Conservative 2PL
� Conservative or static 2PL

� Obtain all locks before any operation
� Make transaction wait (without any lock) if not

all the locks can be obtained.
� No deadlock: If T is waiting for a lock held by

T’ , then T has no lock.
� Disadvantage: you have to know what locks a

transaction needs
� How to get Read set and write set?

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 14

Strict 2PL
� Strict 2PL

� Release all locks at once when the
transaction commits or aborts

� ensures strict schedules
� but can deadlock

8

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 15

Deadlock Prevention
� Pessimistic: prevent deadlock from even

becoming possible by restricting access
when Ti tries to get an element locked by Tj

� Deadlock prevention using timestamps (TS)
� An older transaction has smaller TS.
� Two variations:

� Wait-die
� Wound-wait

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 16

Deadlock Prevention (Cont’d)
� Suppose Ti tries to lock x but is not able to

because x is locked by Tj with a conflicting lock.
� wait-die:

� If TS(Ti) < TS(Tj) then wait Ti
� else abort Ti and restart with same time

� Old transactions are allowed to wait.
� How can wait-die prevent deadlock?

9

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 17

Deadlock Prevention (Cont’d)
� Suppose Ti tries to lock x but is not able to

because x is locked by Tj with a conflicting lock.
� wound-wait:

� If TS(Ti) < TS(Tj) abort Tj and restart with
some timestamp,

� else Ti wait
� Young transactions are allowed to wait.
� How can wound-wait prevent deadlock?

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 18

Deadlock Prevention (Cont’d)
� Prevent deadlock by Limiting Waiting

� No waiting: abort transaction
immediately if lock not obtained

� Cautious waiting: abort transaction only
if current lock holder is itself blocked

10

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 19

Deadlock Detection
� Optimistic strategy
� Detect a cycle in waits-for graph
� Choose a victim transaction
� Abort it thereby removing the deadlock
� Potentially unfair: the same victim is

repeatedly chosen

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 20

Deadlock Detection
� Wait-for Graph

� One node for each transaction
� An edge from Ti to Tj if Ti is waiting to

lock x that is currently locked by Tj.
� Cycle means deadlock.

11

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 21

Read_lock(Y);
Read_item(Y);

Wr ite_lock(X);
…

Read_lock(X);
Read_item(X);

Wr ite_lock(Y);
…

T1 T2

Time

T1

T2

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 22

Multiversion 2PL
� Basic idea:

� Maintain up to two versions of each data item x.
� Each x must have one committed version, supplied to

transactions that read x.
� Create a new version when T needs to write x
� Once T that writes x is ready to commit, it must obtain

a certify lock on all items that it currently holds write
locks on before it can commit.

� To install new versions.

12

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 23

Multi-version 2PL (Cont’d)
� Lock compatibility tables

� 2PL

� Multi-version 2PL

NoNoWrite

NoYesRead

WriteRead

NoNoYesWrite

NoNoNoCertify

Yes

Write

No

Certify

YesRead

Read

What do we gain
via multi-version
2PL?

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 24

Is deadlock possible in multi-
version 2PL?

Read_lock(Y);
Read_item(Y);

Wr ite_lock(X);

Cer tify_lock(X);
…

Read_lock(X);
Read_item(X);

Wr ite_lock(Y);

Cer tify_lock(Y);
…

T1 T2

13

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 25

Multi-granularity locking
� Granularity: the size of a data item

� Database
� Database file
� Disk block
� Relation
� Tuple

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 26

Multi-granularity locking (Cont’d)

� Transaction 1: update 75% of the tuples in
relation Employee.

� Transaction 2: update 1 tuple in relation
Employee.

� How should we set the granularity of data
items?

� Coarse: less concurrency
� Fine: more locks

14

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 27

Multi-granularity locking (Cont’d)

� Basic idea:
� Support multiple granularities.

DB

f1 f2

b11 b1n b21 b2m

r111 r1n1r11i r1nj r211 r1m1r21k r1ml

… …

…… … …

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 28

DB

f1 f2

b11 b1n b21 b2m

r111 r1n1r11i r1nj r211 r1m1r21k r1ml

… …

…… … …

T1: I want to read_lock(r111). Is there any conflicting lock?

T2: I want to read_lock(f1). Is there any conflicting lock?

15

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 29

Multi-granularity locking (Cont’d)

� Solution to reducing search for conflicting locks
� Intention lock:

� For the nodes along the path from the root to the
item of choice (excluding the final node)

� Indicate what types of lock T wants to obtain for the
current node’s descendants

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 30

Multi-granularity locking (Cont’d)

� Intention locks:
� Intention-shared (IS): a shared lock will be requested

on some descendants
� Intention-exclusive (IX): an exclusive lock will be

requested on some descendants
� Shared-intension-exclusive (SIX): the current node is

locked in shared mode, but an exclusive lock will be
requested on some descendants.

16

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 31

DB

f1 f2

b11 b1n b21 b2m

r111 r1n1r11i r1nj r211 r1m1r21k r1ml

… …

…… … …

T1: I want to read (r111).

What locks will be requested?

T2: I want to write (r111).

T3: I want to go through the Employee relation stored
in f1 and update the tuples with Salary > 30000.

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 32

Compatibility matrix for multi-
granularity locking

X

SIX

S

IX

IS

XSIXSIXIS

17

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 33

Multi-granularity locking protocol

1. The lock compatibility matrix must be adhered to.

2. The root of the tree must be locked first, in any mode.

3. A node N can be locked by T in S or IS only if the parent
node is already locked by T in IS or IX.

4. A node N can be locked by T in X, IX, or SIX mode
only if the parent is already locked by T in IX or SIX
mode.

5. T can lock a node only if it has not unlocked any node
(2-phase rule).

6. T can unlock a node N only if none of the children of N
are locked by T (2-phase rule).

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 34

Phantom problem
� Phantom problem occurs when there are

insertions.
� When a new record being inserted by T satisfies

a condition that a set of records accessed by T’
must satisfy.

18

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 35

300Apex333

200Apex222

100Raleigh111

BalanceLocationAccount#

Accounts

500Apex

100Raleigh

BalanceLocation

Assets

Read(Accounts[111]);
Read(Accounts[222]);
Read(Accounts[333]);

Compute assets[Raleigh];
Compute assets[Apex];
Wr ite(Assets[Raleigh]);
wr ite(Assets[Apex]);

Inser t(Accounts[444,
Raleigh, 100])

T1 T2
What’s the Result?

What’s wrong?

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 36

Phantom problem (Cont’d)
� Solutions

� Index locking
� Predicate locking

19

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 37

Optimistic Concurrency Control
� Three phases of a transaction T

� Read phase: T reads data, updates local copies
� Validation phase: check to ensure that

serializability will not be violated if the updates
are applied to the DB

� Write phase: if valid, write to DB
� Basic idea: do all checks at once.
� write-set(T): items written by T
� read-set(T): items read by T

Spring 2002 CSC 742: DBMS by Dr. Peng Ning 38

Optimistic Protocol
� Validate Ti w.r.t. any Tj that committed or is

being validated
� Tj completed its write phase before Ti began its read

phase
� Serial transactions

� Ti starts its write phase after Tj completes its write
phase, and read_set(Ti)∩write_set(Tj) = ∅.

� All possible conflicting pairs of operations are from
Tj to Ti.

� Tj completed its read phase before Ti completes its read
phase, read_set(Ti)∩write_set(Tj) = ∅, and
write_set(Ti)∩write_set(Tj) = ∅.

� All possible conflicting pairs of operations are from
Tj to Ti.

