Outline

- Why is NetBill developed?
- NetBill Transaction Model
- NetBill Transaction Protocol
 - Basic Protocol
 - Optimizations for zero-priced goods
- Failure Analysis
E-Commerce over the Internet

- Internet is attractive for e-commerce
 - Search for suppliers
 - Price negotiation
 - Ordering
 - Payment for goods
 - Delivery of information goods
 - Software, electronic books, etc.

- Challenges
 - No easily identifiable places of business
 - Transactions are subject to observation by their parties
 - Privacy

NetBill

- NetBill is a system developed to facilitate selling and delivery of low-priced information goods over the Internet.
 - Maintain accounts for customers as well as merchants, which are linked to banks
 - Transfer information goods from merchant to customer
 - Transfer money from customer’s account to merchant’s account.
 - Combine small transactions into larger conventional transactions, reducing transaction cost.
NetBill Transaction Model

- Three phases
 - Phase 1: Price negotiation
 - Phase 2: Goods delivery
 - Phase 3: Payment

NetBill Transaction Objectives

- Only authorized customers can charge against a NetBill account
- The customer and merchant must agree on the purchase item and the price
- A customer can optionally protect her identity from merchants
- Customers and merchants are provided with proof of transaction results from NetBill
- There is a negotiation phase between customer and merchant
- A customer may present credentials identifying her for special treatment
- A customer receives the goods if and only if she is charged for the goods
- A customer may need approval from a fourth party before the NetBill server will allow a transaction.
- The privacy and integrity of communications is protected from observation or alteration by external parties.
NetBill Transaction Protocol

- The basic protocol
 - Phase 1: price negotiation
 - C ⇒ M: price request
 - M ⇒ C: price quote
 - Phase 2: goods delivery
 - C ⇒ M: goods request
 - M ⇒ C: goods, encrypted with a key K
 - Phase 3: payment
 - C ⇒ M: signed electronic payment order (EPO)
 - M ⇒ N: endorsed EPO (including K)
 - N ⇒ M: signed result (including K)
 - M ⇒ C: signed result (including K)

Notations

- \(T_{XY}(Id) \): Kerberos ticket proving to Y that X is named by Id, and establish a session key \(XY \) shared between them.
- \(CC(M) \): cryptographic checksum of \(M \).
- \(E_k(M) \): \(M \) encrypted using key \(K \).
- \(E_{X-PUB}(M) \): \(M \) encrypted using X’s RSA public key.
- \(E_{X-Pri}(M) \): \(M \) signed using X’s RSA private key.
- \([M]_X \): \(M \) signed (with RSA) and timestamped by X.
- \([M]_{X-DSA} \): \(M \) signed and timestamped by X with DSA.
- \(\{M\}_X \): \(M \) encrypted for X using RSA.
The Price Request Phase

1. $C \Rightarrow M: T_{CM}(Id), E_{CM}(\text{Credentials, PRD, Bid, RequestFlags, TID})$
2. $M \Rightarrow C: E_{CM}(\text{ProductID, Price, RequestFlags, TID})$

- $T_{CM}(Id)$: prove the identity of the customer
- Credentials: establish the customer’s membership
- PRD: product description
- RequestFlags:
 - Message 1: request for the disposition of the transaction (e.g., Delivery method)
 - Message 2: merchant’s response to customer’s request
- TID:
 - Message 1: if this is a repeated request
 - Message 2: if this is not supplied by the customer

The Goods Delivery Phase

3. $C \Rightarrow M: T_{CM}(Id), E_{CM}(\text{TID})$
4. $M \Rightarrow C: E_{K}(\text{Goods}), E_{CM}(\text{CC}(E_{K}(\text{Goods})), \text{EPOID})$

- M sends to C
 - An encrypted version of the goods
 - The cryptographic checksum of the encrypted goods
 - EPOID: electronic purchase order ID.
 - Merchant ID + a timestamp (delivery time) + a serial number
- Intuition:
 - Reduce the transaction to a fair exchange of K and the payment from C.
 - This fair exchange depends on the NetBill server.
The Payment Phase

5. \(C \Rightarrow M: T_{CM}(Id), E_{CM}([EPO]_C) \)

- EPO consists of
 - Clear part:
 - C’s ID, Product ID, Price, M’s ID
 - CC(E\(_R\)(Goods)), CC(PRD), CC(CAcct, AcctVN)
 - EPOID
 - Encrypted part:
 - \(T_{CN}(TrueID) \)
 - \(E_{CN}(Authorization, CAcct, AcctVN, Cmemo) \)

The Payment Phase (Cont’d)

6. \(M \Rightarrow N: T_{MN}(M), E_{MN}([[EPO]_C, MAcct, MMemo, K]_M) \)

- The merchant endorse and submit the EPO
 - MAcct: Merchant’s NetBill account
 - MMemo: merchant’s memo field
 - K: the key used to deliver the goods
- Point of no return
 - The merchant cannot reverse the transaction.
The Payment Phase (Cont’d)

7. \(N \Rightarrow M: E_{MN}([\text{Receipt}]_{N-DSA}, E_{CN}(\text{EPOID}, \text{CAcct}, \text{Bal}, \text{Flags})) \)

- The NetBill server makes decision based on verification of
 - The signatures
 - Privileges of the users involved
 - Customer’s account balance
 - Uniqueness and freshness of the EPOID

- **Receipt**
 - Result, Identity, Price, ProductID, M, K, EPOID
 - The signed receipt certifies the transaction

The Payment Phase (Cont’d)

8. \(M \Rightarrow C: E_{CM}([\text{Receipt}]_{N-DSA}, E_{CN}(\text{EPOID}, \text{CAcct}, \text{Bal}, \text{Flags})) \)

- Merchant forwards NetBill server’s response to customer
 - M needs to decrypt and re-encrypt
Status Query Exchange

- Needed when there is communication failure

The merchant requests the transaction status from NetBill

1. \(M \Rightarrow N: T_{MN}(M), E_{MN}(EPOID) \)
2. \(N \Rightarrow M: E_{MN}([\text{Receipt}]_{N-\text{DSA}}, E_{CN}(EPOID, CAcct, Bal, Flags)) \)

The customer requests the transaction status from the merchant

1. \(C \Rightarrow M: T_{CM}(\text{Id}), E_{CM}(EPOID) \)
2. \(M \Rightarrow C: E_{CM}([\text{Receipt}]_{N-\text{DSA}}, E_{CN}(EPOID, CAcct, Bal, Flags)) \)

Status Query Exchange (Cont’d)

The customer requests the transaction status from NetBill

1. \(C \Rightarrow N: T_{CN}(\text{TrueId}), E_{CN}(EPOID) \)
2. \(N \Rightarrow C: E_{CN}([\text{Receipt}]_{N-\text{DSA}}, E_{CN}(EPOID, CAcct, Bal, Flags)) \)

The customer requests the transaction status from the merchant for a non-NetBill transaction

1. \(C \Rightarrow M: T_{CM}(\text{Id}), E_{CM}(EPOID) \)
2. \(M \Rightarrow C: E_{CM}(\text{Result}, K) \)
Zero-Priced Goods

- Protocol can be simplified
- Four variations
 - Type indicated in RequestFlags in the price request message
 - Zero-price certified delivery
 - Certified delivery without NetBill server
 - Verified delivery
 - Unverified delivery

Zero-Price Certified Delivery

1. \(C \Rightarrow M \) \(T_{CM}(\text{Identity}), E_{CM}(\text{Credentials, PRD, Bid, RequestFlags, TID}) \)
2/4. \(M \Rightarrow C \) \(E_{CM}(\text{ProductID, Price=0, RequestFlags, TID}), E_K(\text{Goods}), E_{CM}(\text{CC}(E_K(\text{Goods})), EPOID) \)
5. \(C \Rightarrow M \) \(T_{CM}(\text{Identity}), E_{CM}(\text{EPO})_C \)
6. \(M \Rightarrow N \) \(T_{MN}(M), E_{MN}([EPO]_C, M\text{Acct, Memo, } K_M) \)
7. \(N \Rightarrow M \) \(E_{MN}([\text{Receipt}]_{N-DSA}, E_{CN}(\text{EPOID, CAcct, Bal, Flags})) \)
8. \(M \Rightarrow C \) \(E_{CM}([\text{Receipt}]_{N-DSA}, E_{CN}(\text{EPOID, CAcct, Bal, Flags})) \)

Price negotiation can be omitted.

But delivery must be certified by NetBill.
Certified Delivery without NetBill

1. \(C \rightarrow M \): \(T_{CM}(Identity), E_{CM}(Credentials, \ PRD, Bid, RequestFlags, TID) \)

2/4. \(M \rightarrow C \): \(E_{CM}(ProductID, Price(=0), \ RequestFlags, TID), E_K(Goods), \ ECM(CC(E_K(Goods)), EPOID) \)

5. \(C \rightarrow M \): \(T_{CM}(Identity), E_{CM}(EPOID, \ CC(E_K(Goods))) \)

8. \(M \rightarrow C \): \(E_{CM}(Result, K) \)

- No need to go through NetBill.
- But \(C \) cannot recover if \(M \) decides not to send message 8.

Verified Delivery

1. \(C \rightarrow M \): \(T_{CM}(Identity), E_{CM}(Credentials, \ PRD, Bid, RequestFlags, TID) \)

2/4. \(M \rightarrow C \): \(E_{CM}(ProductID, Price(=0), \ RequestFlags, TID, Goods, \ CC(Goods), EPOID) \)

5. \(C \rightarrow M \): \(T_{CM}(Identity), E_{CM}(EPOID, \ CC(Goods)) \)

8. \(M \rightarrow C \): \(E_{CM}(Result) \)

- Goods is encrypted with shared session key.
- \(C \) doesn’t have to wait for \(K \).
Unverified Delivery

1. \(C \Rightarrow M \) \(T_{CM}(\text{Identity}), E_{CM}(\text{Credentials, PRD, Bid, RequestFlags, TID}) \)

2/4. \(M \Rightarrow C \) \(E_{CM}(\text{ProductID, Price(=0), RequestFlags, TID, Goods, CC(Goods))} \)

• Eliminate the acknowledgement of goods delivery.

Failure Analysis

• Customer complaints
 – Incorrect or damaged goods
 • Can be resolved with the EPO, which contains a cryptographic checksum of the encrypted goods
 – Cannot deal with false advertisement
 – No decryption key
 • Can be resolved by a status query exchange with the NetBill server
Failure Analysis (Cont’d)

• Transaction dispute
 – Inconsistent price
 • Can be resolved by checking the EPO signed by the customer
 – Fraudulent transactions
 • Same resolution as above.

Failure Analysis (Cont’d)

• Merchant Complaints
 – Insufficient payment
 • Can be resolved by checking the receipt signed by NetBill
Identification and Authentication

- Public key based Kerberos
 - Each entity has public/private key pair with a certificate for the public key
 - Public key certificate is used to obtain a Kerberos server ticket

1. \(C \rightarrow M \ [\{\text{Identity, M, Timestamp, K}\}^M_C] \)
2. \(M \rightarrow C \ E_K(T_{CM}(\text{Identity}, CM)) \)

Privacy protection

- Pseudonym mechanism
 - Implemented through a pseudonym-granting server \(P \).
 - Two methods
 - Per transaction
 - Use a unique pseudonym for each transaction
 - Per merchant
 - Use a unique pseudonym for each customer-merchant pair
Authorization

1. $C \Rightarrow A \quad T_{CA}(\text{Identity}), E_{CA}(M, \text{ProductID}, \text{Price}, CC(E_K(\text{Goods})), \text{EPOID}, \text{CAcct})$

2. $A \Rightarrow C \quad E_{CA}(E_{A-PRJ}(CC(\text{Identity}, M, \text{ProductID}, \text{Price}, CC(E_K(\text{Goods})), \text{EPOID}, \text{CAcct})))$

- Performed through an access control server A.
 - Message returned by A is used as the authorization token in an EPO.