Outline

- Micropayment systems
 - Make small purchase over the Internet
- Two simple micropayment schemes
 - PayWord
 - MicroMint
PayWord and MicroMint

- **Main goal**
 - Minimize the number of public key operations
 - Use hash operations instead whenever possible
 - Hash functions are
 - 100 times faster than RSA signature verification
 - 10,000 times faster than RSA signature generation

PayWord

- **Overview**
 - Credit based scheme
 - Based on chains of paywords (hash values)
 - Broker gives a certificate to user to allow him/her to make paywords
 - User authenticates a complete chain to the vendor with a single public-key signature
 - User successively reveals each payword in the chain to make micropayment
 - Vendor gets money through broker.
PayWord (Cont’d)

• User-Broker relationship
 – User U establishes an account with broker B
 • Credit card number, expiration date, etc.
 – Broker B gives user U a certificate
 • Expiration date
 • Credit limit per vendor
 • Contact information of broker B
 • …
 – The certificate:
 • B will redeem authentic paywords produced by U
 turned in before the given expiration date.
 • Essentially allows U to produce paywords.

PayWord (Cont’d)

• User-Vendor relationships
 – Randomly choose w_n, and compute the paywords
 – User U sends Vendor V her commitment
 \[M = \{ V, C_U, w_0, D, I_M \}_SK_U \]
 – Commitment is vendor-specific and user-specific

h: one-way hash function

\[w_0 \xrightarrow{h} w_1 \xrightarrow{h} w_2 \xrightarrow{h} \ldots \xrightarrow{h} w_n \]
PayWord (Cont’d)

• Payment
 – A payment P from U to V
 – P = (w_i, i)
 – U spends her paywords in order
 – Variable-size payment
 • Example: U has just paid (w_3, 3). What should U send to V if she wants to pay 3 more cents?
 • (___, ___)

PayWord (Cont’d)

• Vendor-Broker relationship
 – For each User U, Vender V needs to send Broker B
 • The commitment C_U
 • The last payment P=(w_l, l) received from U
 – Broker verifies C_U and each payment P=(w_i, l)
 – Questions:
 • What’s the cost of verifying P=(w_i, l) ?

 • What property(ies) of the hash function is used in PayWord?

MicroMint

- Overview
 - No public key operations
 - For unrelated low-value payments
 - Broker produces MicroMint coins
 - A coin is a bit string whose validity can be checked by anyone
 - Users purchase the coins
 - Users give the coins to vendors as payments
 - Vendors return coins to broker in turn for payments by other means.

MicroMint (Cont’d)

- Coins
 - Each coin is represented by a k-way collision that has distinct x_i’s.
 - The number of x-values that must be examined before one expects to see the first k-way collision is approximately $2^{n(k-1)/k}$, where n is the number of bits in y.
MicroMint (Cont’d)

• Minting coins
 – Equivalent to throwing balls into 2^n bins
 • Randomly select x, and compute $y=h(x)$.
 – Throw approximately $k*2^n$ balls
 • Roughly 1/2 of the bins have at least k balls.

MicroMint (Cont’d)

• Minting coins
 – Question: If there are more than k x’s in the same bin, can we make more than one coin out of it?
 • __________________
 – Balance computational and storage requirements
 • Good coins: a coin is good only when the high-order t bits are equal to a given value.
 • Reduce the storage requirements
 • Slow down the generation process
 – Tosses $k*2^n$ balls, but get $(1/2)*2^{(n-t)}$ coins.
MicroMint (Cont’d)

• Selling coins
 – Broker B remembers what coins User U gets

• Making payments
 – Vendor V can verify each coin

• Redemption
 – Vendor returns the coins to the broker
 – Broker checks coins and pays the vendor
 • Only pay for coins that have not been previously returned.

MicroMint (Cont’d)

• Double spending
 – Broker can detect doubly-spent coin
 – Broker can identify from which vendors he received such coins
 – Broker can link the doubly-spent coins with each user