CSC 774 Advanced Network Security

Topic 4. Broadcast Authentication

What Is Broadcast Authentication?

• One sender; multiple receivers
 – All receivers need to authenticate messages from the sender.
Challenges in Broadcast Authentication

- Can we use symmetric cryptography in the same way as in point-to-point authentication?

- How about public key cryptography?
 - Effectiveness?
 - Cost?

- Research in broadcast authentication
 - Reduce the number of public key cryptographic operations

CSC 774 Advanced Network Security

Topic 4.1 TESLA and EMSS
Outline

• Two Schemes
 – TESLA
 • Sender Authentication
 • Strong loss robustness
 • High Scalability
 • Minimal overhead
 – EMSS
 • Non-Repudiation
 • High loss robustness
 • Low overhead

TESLA - Properties

• Low computational overhead
• Low per packet communication overhead
• Arbitrary packet loss tolerated
• Unidirectional data flow
• No sender side buffering
• High guarantee of authentication
• Freshness of data
TESLA – Overview

- Timed Efficient Stream Loss–tolerant Authentication
- Based on *timed and delayed release of keys* by the sender
- Sender commits to a random key K and transmits it to the receivers without revealing it
- Sender attaches a MAC to the next packet P_i with K as the MAC key
- Sender releases the key in packet P_{i+1} and receiver uses this key K to verify P_i
- Need a security assurance

TESLA – Scheme I

Each packet P_{i+1} authenticates P_i

- Problems?
 - Security? Robustness?
TESLA – Scheme I (Cont’d)

- If attacker gets P_{i+1} before receiver gets P_i, it can forge P_i
- Security Condition
 - $ArrT_i + \delta_i < T_{i+1}$
 - Sender’s clock is no more than δ_i seconds ahead of that of the receivers
 - One simple way: constant data rate
- Packet loss not tolerated

TESLA – Scheme II

- Generate a sequence of keys $\{ K_i \}$ with one-way function F
 - $F^v(x) = F^{v-1}(F(x))$
 - $K_0 = F^n(K_n)$
 - $K_i = F^{n-i}(K_n)$
- Attacker cannot invert F or compute any K_j given K_i, where $j > i$
- Receiver can compute all K_j from K_i, where $j < i$
 - $K_j = F^{v-j}(K_i)$; $K'_i = F'(K_i)$
TESLA – Scheme II (Cont’d)

Remaining problems with Scheme II
- Inefficient for fast packet rates
- Sender cannot send P_{i+1} until all receivers receive P_i

Scheme III
- Does not require that sender wait for receiver to get P_i before it sends P_{i+1}
- Basic idea: Disclose K_i in P_{i+d} instead of P_{i+1}
TESLA – Scheme III (Cont’d)

- Disclosure delay $d = [(\delta_{t_{\text{Max}}} + d_{N_{\text{Max}}}) r]$
 - $\delta_{t_{\text{Max}}}$: maximum clock discrepancy
 - $d_{N_{\text{Max}}}$: maximum network delay
 - r: packet rate
- Security Condition:
 - $ArrT_i + \delta_i < T_{i+d}$
- Question:
 - Does choosing a large d affect the security?

TESLA – Scheme IV

- Deals with dynamic transmission rates
- Divide time into intervals
- Use the same K_i to compute the MAC of all packets in the same interval i
- All packets in the same interval disclose the key K_{i-d}
- Achieve key disclosure based on intervals rather than on packet indexes
TESLA – Scheme IV (Cont’d)

- Interval index: \(i = (t - T_o)/T_\Delta \)
- \(K'_i = F'(K_i) \) for each packet in interval \(i \)
- \(P_j = < M_j, i, K_{i-d}, MAC(K'_i, M_j) > \)
- Security condition:
 - \(i + d > i' \)
 - \(i' = (t_j + \delta - T_o)/T_\Delta \)
 - \(i' \) is the farthest interval the sender can be in
TESLA – Scheme V

- In Scheme IV:
 - A small d will force remote users to drop packets
 - A large d will cause unacceptable delay for fast receivers
- Scheme V
 - Use multiple authentication chains with different values of d
- Receiver verifies one security condition for each chain C_i, and drops the packet is none is satisfied

TESLA--Immediate Authentication

- M_{j+vd} can be immediately authenticated once packet j is authenticated
- Not to be confused with packet $j+vd$ being authenticated
TESLA – Initial Time Synchronization

- $R \rightarrow S$: Nonce
- $S \rightarrow R$: \{Sender Time t_S, Nonce, ...\} K_s^{-1}

R only cares the maximum time value at S.

Max clock discrepancy:
$\Delta_T = t_S - t_R$

EMSS

- Efficient Multichained Streamed Signature
- Useful where
 - Non Repudiation required
 - Time synchronization may be a problem
- Based on signing a small no. of special packets in the stream
- Each packet linked to a signed packet via multiple hash chains
EMSS – Basic Signature Scheme

- Sender sends periodic signature packets
- P_i is verifiable if there exists a path from P_i to any signature packet S_j
EMSS – Extended Scheme

- Basic scheme has too much redundancy
- Split hash into \(k \) chunks, where any \(k' \) chunks are sufficient to allow the receivers to validate the information
 - Rabin’s Information Dispersal Algorithm
 - Some upper few bits of hash
- Requires any \(k' \) out of \(k \) packets to arrive
- More robust