Overview

• BiBa stands for “Bins and Balls”
 – Use one-way functions without trapdoors (e.g., hash functions)
• BiBa signature scheme
• BiBa broadcast authentication protocol
BiBa Signature Scheme

- Precompute of SEALs
 - SEAL: SElf Authenticating vaLues

- Signature generation
 - Exploit SEALs and the difficulty of finding collisions under hash functions

- Signature verification
 - Verify SEAL
 - Verify collisions

SEAL

- Each SEAL is randomly generated
- Given a SEAL s, the signer computes $f_s = F_s(0)$, where F_s is a PRF
 - f_s is the commitment to s
 - f_s is authenticated to all possible verifiers (e.g., through a RSA signature or pre-distribution)
- In BiBa, the signer has t pre-computed SEALs
 - SEALs: $s_1, s_2, ..., s_t$
 - All SEALs are authenticated to all verifiers
BiBa Signature: Intuition

- **Sign message** m
 - Compute hash $h = H(m)$, where H is a hash function
 - Consider a hash function family G_h, whose range is $0, n-1$
 - Example: $G_i(x) = G(x|1)$, where G is SHA1
 - Compute G_h for all SEALs s_1, \ldots, s_t
 - That is, $G_h(s_1), G_h(s_2), \ldots, G_h(s_t)$
 - Look for a 2-way collision of SEALs
 - $G_h(s_i) = G_h(s_j)$ with $s_i \neq s_j$
 - The pair $<s_i, s_j>$ forms the signature

- **Signature verification**
 - Compute hash $h = H(m)$
 - Verify $s_i \neq s_j$ and $G_h(s_i) = G_h(s_j)$

Basic BiBa Scheme

Balls (SEALs):

Bins (Range of G_h):

Signature
Security of BiBa Signature

- Security comes from
 - The difficulty of finding k-way collisions for one-way functions
 - The asymmetric property that the signer has more SEALs than the adversary
 - Signer can easily generate the BiBa signatures with high probability while adversary can’t.

- Exploits the birthday paradox
 - Probability that there is at least one collision of the hashes of t random messages is approximately
 - $1 - e^{-(t-1)/2N}$, where N is range of hash function.

Security of BiBa Signature (Cont’d)

- Signer (with 1200 SEALs)
- Attacker (with 10 SEALs)

Graph showing probability of finding signatures versus number of balls.
BiBa Signature Scheme

- **Basic scheme**
 - Signer is not guaranteed to find a signature

- **BiBa Signature**
 - Sign message m
 - $h = H(m|c)$, where c is a counter starting from 0
 - c is incremented if no signature is found
 - Compute G_h for all SEALs $s_1, ..., s_t$
 - Look for a k-way collision of SEALs
 - Verify signature
 - Verify the k SEALs are distinct
 - Verify that they have the same image

BiBa Broadcast Authentication Protocol

- **Sender needs to authenticate potentially infinite stream of messages**
- **Sender can only disclose a small number of SEALs before attacker would have enough to forge signature**
 - Limit the number of messages that can be signed
- **Solution**
 - SEAL chains
 - Combination of SEALs and TESLA
SEAL Chains

\[S_{i,j} = F_{S_{i,j+1}}(K_{j+1}) \]

SEAL chains Salt chain

Limitation of BiBa Broadcast Authentication

- High receiver computation overhead
 - Most of the SEALs are not used
 - To authenticate a SEAL, each receiver needs to recompute many SEALs in a one-way SEAL chain
Extension A

- **SEAL boundary**

So if an attacker slows down the traffic to the receivers, …

- Packet losses

Extension B

- To tolerate packet losses
 - Add SEAL boundary information to packets
 - More communication overhead, but also more robust

- Receivers still need to know the sending rate
 - Why?