Mobile Ad-hoc Networks (MANET)

- MANET
 - No infrastructure support
 - Wireless communication
 - Mobile

- Applications for MANET
 - Rescue missions
 - Scientific explorations
 - Military operations
Security in MANET

- Challenges
 - No physical boundary
 - No fixed topology
 - Nowhere to place firewalls
 - Unreliable communication

CSC 774 Advanced Network Security

Topic 6.1 Ariadne: A Secure MANET Routing Protocol
Outline

- Dynamic Source Routing (DSR) protocol
 - Basis of Ariadne
- Attacks against MANET routing protocols
- Ariadne

DSR

- Two phases
 - Route discovery
 - Discover routes from the initiator to the target
 - Route maintenance
 - Maintain route
DSR (Cont’d)

• Route discovery
 – Initiator broadcasts REQUEST to its neighbors
 • Each REQUEST is uniquely identified by the initiator’s address and a sequence number
 – If a node receives this REQUEST
 • If it has received this REQUEST previously, discard it
 • Otherwise, append itself to a list in this REQUEST and rebroadcast it
 – When the destination receives this REQUEST
 • Sends back a REPLY, including the list of nodes in the REQUEST
 – When the initiator receives the REPLY
 • Cache the list of nodes in REPLY

DSR (Cont’d)

• Route maintenance
 – Source routing
 • When sending a packet, the originator includes the complete route in the packet header
 • Each node forwards the packet based on the route in the header
 – Route error
 • When a node detects a link break, it sends a ROUTE ERROR message to the originator, identifying the broken link
 • The originator removes the route from its cache, uses an alternative route or rediscover a new route
Attacks against MANET Routing Protocols

- **Type of attacks**
 - Passive
 - Eavesdrop
 - Active
 - Inject packets into the network

- **Compromised nodes**
 - Attackers may know all keying materials on compromised nodes

Attacks against MANET Routing Protocols (Cont’d)

- **Active-n-m attacker**
 - The attacker has compromised n nodes and owns m nodes
- **Attacker hierarchy**
 - Measure the security of the routing protocol
 - Ariadne: resilience against Active-1-x and Active-y-x attacks

\[\text{Active-0-1} \rightarrow \text{Active-0-x} \rightarrow \text{Active-1-x} \rightarrow \text{Active-y-x}\]
Attacks against MANET Routing Protocols (Cont’d)

• Active attacks on ad hoc routing protocols
 – Routing disruption
 • Routing loop
 • Black hole (gray hole)
 • Wormhole
 • Rushing attack
 – Resource consumption
 • Packet injection

Ariadne

• Overview
 – Based on DSR
 – Use
 • Pairwise shared secret keys
 • TESLA
 • Digital signature
 – Undesirable due to the overhead and possible DOS attacks
 – Main target
 • Active-y-x attackers
Ariadne (Cont’d)

• Notations
 – \(A, B \) : principals
 – \(K_{AB}, K_{BA} \) : secret MAC keys between \(A \) and \(B \)
 – \(\text{MAC} (M) \) : MAC of message \(M \) using MAC key \(K_{AB} \)

Route Discovery

• Goals
 – Target can authenticate initiator
 • Initiator includes a MAC computed with \(K_{SD} \)
 – Initiator and target can authenticate the node list in REPLY and REQUEST
 – No intermediate node can remove a previous node’s entry in the node list
Route Discovery (Cont’d)

- Authenticate node list in REQUEST
 - With TESLA
 - Each node has a TESLA instance
 - An intermediate node appends a MAC computed with its TESLA key
 - With digital signature
 - Each node digitally signs REQUEST
 - With pairwise key
 - Each node appends a MAC computed with a pairwise key shared with the target
- Authentication of node list in REPLY is done similarly

Route Discovery (Cont’d)

- Per-hop hashing
 - Prevent intermediate node from removing entries from the node list in REQUEST or REPLY
 - The source initializes the hash chain field to a MAC generated with a pairwise key shared between the source and the target
 - Each node A updates the hash chain field with $H[A, hash\ chain]$
Route Discovery with TESLA

• Route Request
 ➢ <RREQ, initiator, target, id, time interval, hash chain, node_list, MAC_list>
 ➢ Initiator initializes hash chain to $\text{MAC}_{\text{KSD}}(\text{initiator}, \text{target}, \text{id}, \text{time interval})$
 ➢ Intermediate node A which receives the request checks $<\text{initiator}, \text{id}>$ and checks time interval
 • Time interval: TESLA time interval at the pessimistic expected arrival time of the RREQ at target (say $T + 2d$)
 • If any condition fails, discard the request

Route Discovery with TESLA (Cont’d)

• If all conditions hold, A appends its address to node list, replaces hash chain with $H[A, \text{hash chain}]$, appends MAC of entire Request with TESLA key K_{A_i} to MAC list
 ➢ Target checks validity of Request
 • the TESLA keys are not disclosed yet
 • the hash chain is equal to $H[n_n, H[n_{n-1}], H[...], H[n_1, \text{MAC}_{\text{KSD}}(\text{initiator}, \text{target}, \text{id}, \text{interval})]...]$
 • If Request is valid, target returns a Route Reply
Route Discovery with TESLA (contd.)

- Route Reply
 - \(<\text{RREP}, \text{target}, \text{initiator}, \text{time interval}, \text{node list}, \text{MAC list}, \text{target MAC}, \text{key list}>\)
 - Packet is sent to initiator along the route in node list
 - Forwarding node waits until it can disclose its key and then append its key
 - Initiator verifies that
 - Each key is valid (TESLA security condition)
 - target MAC is valid (based on K_{DC} shared with target)
 - Each MAC in MAC list is valid (based on TESLA keys)

Example

$$S: \quad h_0 = \text{MAC}_{K_{DC}}(\text{REQUEST}, S, D, \text{id}, \text{ti})$$

$$S \rightarrow A: \quad (\text{REQUEST}, S, D, \text{id}, \text{ti}, h_0, (),())$$

$$A: \quad h_1 = H[A, h_0]$$
$$M_A = \text{MAC}_{K_A}(\text{REQUEST}, S, D, \text{id}, \text{ti}, h_1, (A), ())$$

$$A \rightarrow A: \quad (\text{REQUEST}, S, D, \text{id}, \text{ti}, h_1, (A), (M_A))$$

$$B: \quad h_2 = H[B, h_1]$$
$$M_B = \text{MAC}_{K_{B_{\text{req}}}}(\text{REQUEST}, S, D, \text{id}, \text{ti}, h_2, (A, B), (M_A))$$

$$B \rightarrow A: \quad (\text{REQUEST}, S, D, \text{id}, \text{ti}, h_2, (A, B), (M_A, M_B))$$

$$C: \quad h_3 = H[C, h_2]$$
$$M_C = \text{MAC}_{K_{C_{\text{req}}}}(\text{REQUEST}, S, D, \text{id}, \text{ti}, h_3, (A, B, C), (M_A, M_B))$$

$$C \rightarrow A: \quad (\text{REQUEST}, S, D, \text{id}, \text{ti}, h_3, (A, B, C), (M_A, M_B, M_C))$$

$$D: \quad M_D = \text{MAC}_{K_{DS}}(\text{REPLY}, D, S, \text{ti}, (A, B, C), (M_A, M_B, M_C))$$

$$D \rightarrow C: \quad (\text{REPLY}, D, S, \text{ti}, (A, B, C), (M_A, M_B, M_C), (M_D, (K_{C_{\text{req}}}, K_{B_{\text{req}}}, K_{A_{\text{req}}}))$$

$$C \rightarrow B: \quad (\text{REPLY}, D, S, \text{ti}, (A, B, C), (M_A, M_B, M_C), M_D, (K_{C_{\text{req}}}, K_{B_{\text{req}}}, K_{A_{\text{req}}}))$$

$$B \rightarrow A: \quad (\text{REPLY}, D, S, \text{ti}, (A, B, C), (M_A, M_B, M_C), M_D, (K_{C_{\text{req}}}, K_{B_{\text{req}}}, K_{A_{\text{req}}}))$$

$$A \rightarrow S: \quad (\text{REPLY}, D, S, \text{ti}, (A, B, C), (M_A, M_B, M_C), M_D, (K_{C_{\text{req}}}, K_{B_{\text{req}}}, K_{A_{\text{req}}}))$$
Route Maintenance

• Security issue
 – Prevent unauthorized nodes from sending (bogus) ROUTE_ERRORs

Route Maintenance (Cont’d)

• Route Error
 ➢ <ROUTE_ERROR, sending address, receiving address, time interval, error MAC, recent TESLA key> source routed back to initiator
 ➢ Intermediate node
 • Forwards the packet and searches its route cache for all routes that use <sending address, receiving address>
 • If exists, checks validity of time interval
 • If valid, checks authentication of the Error
 • Until authentication, saves Error info in memory until a key is disclosed and uses routes in route cache
 • If authenticated, removes all such routes
Thwarting Routing Misbehaviors

- What if intermediate nodes in the source route don’t forward packets?
 - A feedback based reputation scheme to detect misbehaving nodes - relies on feedback about which packets were successfully delivered
 - A node with multiple routes sends a fraction along each route and sends packets along the successful route
 - Malicious node avoidance in Route Discovery
 - Route Request includes a list of malicious nodes to avoid and the MAC h_0 computed over that list – no details
 - Malicious nodes can be detected by target

Thwarting Malicious REQUEST floods

- Since REQUEST are authenticated at the target, and not at every hop, attacker can flood malicious REQUESTs
- **Route Discovery chains**
 - To weakly authenticate REQUESTs instantly
 - One-way chains generated as $K_i = H^{N-i} [K_N]$
 1. Release one key for each Discovery (rate-limiting requests)
 - A node not partitioned from the network can prevent an attacker from reusing keys
 2. Dictate schedule for disclosure of key + loose clock synchronization
 - Any node can prevent an attacker from reusing keys
 - Computationally slightly more expensive
An Optimization

- **Observation**
 - Only the initiator can use the discovered route, since the intermediate nodes cannot authenticate the target
 - Would be more efficient if the intermediate nodes can also use the discovered route

- **Optimization**
 - Target uses TESLA key to generate the MAC
 - The key is released by target, to initiator, after appropriate delay, which the intermediate nodes also use.