Background -- Localization

- Data usually combined with locations
 - Fire alarm, target tracking
- Traditional GPS
 - Expensive; does not work indoors
- GPS-less localization techniques
 - AHLoS, APS-AoA, DV-Hop, Centroid, APIT, etc.
Attacks against Localization

- Challenges in defending these attacks
 - Resource constraints on sensor nodes
 - Lack of physical protection
 - Local collaboration v.s. global threat
 - Difficulty of authenticating beacon signals

Range-Based Localization

- A few beacon nodes with known locations.
- Two phases:
 - Phase 1: Estimating distance (RSSI, TDoA, or ToA)
 - Phase 2: Solving equations by using MMSE

\[
\begin{align*}
\begin{cases}
 f_1 &= d_1 - \sqrt{(x-x_1)^2 + (y-y_1)^2} \\
 f_2 &= d_2 - \sqrt{(x-x_2)^2 + (y-y_2)^2} \\
 f_3 &= d_3 - \sqrt{(x-x_3)^2 + (y-y_3)^2}
\end{cases}
\end{align*}
\]

\[
\min F = f_1^2 + f_2^2 + f_3^2
\]
Impact of Malicious Attacks

- Obtained through simulation
- MMSE with 1 malicious beacon signal + 9 benign beacon signals
- A single malicious signal ⇒ arbitrarily large location error

Attack-Resistant Location Discovery

- Goal
 - Resilient location estimation when there are malicious location references
- Our approaches
 - Attack-resistant MMSE: identify “inconsistency” among malicious and benign beacon signals
 - Voting-based scheme: have each location reference vote on the location of the non-beacon node.
Assumptions

- Use a key management protocol that provides a unique pair-wise key between any two nodes.
 - E.g., TinyKeyMan
- This implies
 - Each sensor node is uniquely identified
 - Beacon packets can be authenticated
 - The content, not the signal

Assumptions (Cont’d)

- Each sensor node uses at most one beacon signal from each beacon node
 - Represented as a location reference \(<x_i, y_i, \delta_i>\)
 - Location of the beacon node and the measured distance.
- Attacker model
 - A malicious beacon node can provide arbitrary location references
Attack-Resistant MMSE

• Observation: there is “inconsistency” between benign and malicious location references
• Intuition: identify the most inconsistent location references before final estimation
• Consistency metric (ξ^2): mean square error of distance measurement

$$\xi^2 = \sum_{i=1}^{m} \left(\delta_i - \sqrt{(\tilde{x} - x_i)^2 + (\tilde{y} - y_i)^2} \right)^2 \leq \tau^2$$

Attack-Resistant MMSE (Cont’d)

• Ideally, get the largest consistent set of location references
 – MMSE can achieve more accurate result with more benign location references
• What we have: check consistency, given a set of location references and a pre-defined threshold τ
 – If $\xi^2 > \tau^2 \Rightarrow$ inconsistent; otherwise, consistent
• Two remaining questions
 – How to determine the largest consistent set
 – How to set an appropriate threshold
Determining the Largest Consistent Set

- **A simple solution**
 - Try every combination of location references
 - Expensive: 10 location references, and 5 of them in the largest consistent set → at least 387 MMSE operations

- **Greedy algorithm**
 - Multiple rounds
 - Remove the most inconsistent location reference in each round
 - Not guaranteed to find the largest consistent set

Greedy Algorithm

A set of \(m \) location references and a predefined threshold \(\tau \)

1. **Consistency Test**
 - If \(i = m \)
 - Find consistent set and output result
 - If \(i > 3 \)
 - Fail to find consistent set
 - If \(i \leq 3 \)
 - Find the one with the smallest MSE

10 location references, and 5 of them in the largest consistent set → 50 MMSE operations on average
Threshold \(\tau \)

- Investigate the distribution of MSE \(\xi^2 \) when there is no malicious attack
- If the measurement errors are independent, we have
 \[
 \lim_{m \to \infty} F[\xi^2 \leq \xi_0^2] = \Phi\left(\frac{m\xi_0^2 - \mu'}{\sigma'}\right)
 \]
 where \(\mu_i \) and \(\sigma_i \) are the mean and variance of \(e_i^2 \), and
 \[
 \mu' = \sum_{i=1}^{m} \mu_i, \sigma' = \sqrt{\sum_{i=1}^{\infty} \sigma_i^2}
 \]

Theoretical Results v.s. Simulation Results

The threshold should not be too small or too large.
Voting-Based Scheme

- **Partition** the target field into grid with \(M \) small squares (cells)
- Each location reference votes on the possible locations of node
- Identify the cell (or cells) with the largest vote

Overlap Test

- No overlap between the cell and the ring *iff*
 - The maximum distance from A to a point in the cell \(d_{\text{max}}(A) < \max(0, \delta - \varepsilon) \), or
 - The minimum distance from A to a point in the cell \(d_{\text{min}}(A) > \delta + \varepsilon \)
Granularity M

- Fine granularity (large M) results in high accuracy but high computation and storage cost,
- Coarse granularity (small M) results in low accuracy but low computation and storage cost

Iterative Refinement

- Idea
 - Repeat the basic voting algorithm on the result of the last voting round
- Stop conditions
 - Achieve the required accuracy (size of cells)
 - Size of the cell cannot be reduced anymore
- We use the second stop condition in our experiments
Simulation Evaluation

- Evaluate the ability of the proposed methods to tolerate malicious attacks
- Three attack scenarios
 - One malicious location reference \((9 + 1)\)
 - Multiple non-colluding malicious location references \((9 + 3)\)
 - Multiple colluding malicious location references \((9 + 3)\)
- Configuration:
 - 30m X 30m target field
 - Radio signal range 22m
 - Distance error evenly distributed in \((-4, 4)\)

Evaluation of Attack-Resistant MMSE

![Graph showing location estimation error vs. location error introduced by malicious beacons for different scenarios.](image-url)
Evaluation of Voting-Based Scheme

Comparison

Due to the non-optimal solution given by greedy algorithm.
Implementation

- Target at MICA2 motes running TinyOS

<table>
<thead>
<tr>
<th>Code Size (byte)</th>
<th>ROM</th>
<th>RAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSE</td>
<td>2,034</td>
<td>286</td>
</tr>
<tr>
<td>AR-MMSE</td>
<td>3,226</td>
<td>396</td>
</tr>
<tr>
<td>Voting-Based</td>
<td>4,488</td>
<td>174</td>
</tr>
</tbody>
</table>

Execution Time

![Graph showing execution time vs number of location references]

1 malicious location reference $e = 4, e = 10$
Field Experiment

Use RSSI to measure distance
$\epsilon = 4$feet

1 Malicious Beacon
3 Non-Colluding Malicious Beacons

![Graph showing location estimation error vs. location error created by malicious beacon for MMSE, AR-MMSE, and Voting methods.]

3 Colluding Malicious Beacons

![Graph showing location estimation error vs. location error created by malicious beacon for MMSE, AR-MMSE, and Voting methods.]

Conclusion

- We have been investigating various techniques to secure localization in sensor networks
 - Prevention
 - Tolerance
 - Detection and response

- Future work
 - Light-weighted secure and resilient solutions
 - Secure and resilient localization for dynamic sensor networks