Secret Sharing

- Objective
 - Divide data D into n pieces D_1, \ldots, D_n in such a way that
 - Knowledge of any k or more D_i pieces makes D easy to compute,
 - Knowledge of any $k-1$ or fewer D_i pieces leaves D completely
 undetermined.
 - Such a scheme is called a (k, n) threshold scheme.

- Useful when no single entity can be trusted with the secret
 - Management of cryptographic keys

Shamir’s Secret Sharing

- Underlying fact
 - Based on polynomial interpolation.
 - Given k points in the 2-d plane $(x_1, y_1), \ldots, (x_k, y_k)$
 with distinct x_i’s,
 - there is one and only one polynomial $q(x)$ of degree $k-1$ such that
 $q(x_i)=y_i$ for all i.
Shamir’s Secret Sharing (Cont’d)

• Split the secret D
 – To divide D into pieces D_i…
 – Pick a random $k - 1$ degree polynomial
 $$q(x) = a_0 + a_1x + \cdots + a_{k-1}x^{k-1}$$
 in which $a_0 = D$.
 – Evaluate $D_1 = q(1), D_2 = q(2), \ldots, D_n = q(n)$.
 – The secret shares represent distinct points on the polynomial.

Shamir’s Secret Sharing (Cont’d)

• Reconstruction
 – Given any subset of k of these D_i values (with their identifying indices)
 • Find the coefficients of $q(x)$ by interpolation,
 • Evaluate $D = q(0)$.
 – Given just $k - 1$ of these values,
 • D could be any value
 • In other words, D being any value will give one and only one possible polynomial
 • Alternatively, view these as linear equations.