Basic Idea

• Use identity as the key for encryption and signature verification.
 – No key directory needed.
• Trusted key generation center (KGC)
 – Give each user a smart card when user first joins the network.
 – Each user uses the secret key in smart card for decryption and signature verification.
 – KGC can be closed after all cards are issued.

Basic Idea (Cont’d)
The security of underlying cryptographic functions.

• The secrecy at KGC.
• Identity check before issuing cards to users.
• The loss, duplication and unauthorized use of cards.

Implementation of Signature Scheme

• KGC chooses three public parameters. The factorization of n is only known by KGC.
 – $n=pq$, p and q are large primes
 – e, which is relatively prime to $\phi(n)$
 – f, which is one way function
• The secret key corresponding identity i is g
 – $g^e = i \pmod{n}$
 – KGC can compute g easily. Why?
 $$ ed \equiv 1 \pmod{\phi(n)} $$
 $$ p' = (g^e)^i \pmod{n} - g $$
Signature Generation and Verification

• Signature generation
 1. Choose random number r
 2. $t = r^e \pmod{n}$
 3. $s = g \cdot r^f(t,m) \pmod{n}$
 4. Signature is (t, s)

• Signature verification
 $se = i \cdot t^{k_i} \pmod{n}$
 $s^e = g^e \cdot r^e \cdot f(t,m) \pmod{n}$

Misc

• Multiplicative relationship between the identities will introduce same relationship between secret key.
 – Expand identity to pseudo-random string

• r cannot be reused or revealed