CSC/ECE 774 Advanced Network Security

Topic 3.1: NetBill

Outline

• Why is NetBill developed?
• NetBill Transaction Model
• NetBill Transaction Protocol
 – Basic Protocol
 – Optimizations for zero-priced goods
• Failure Analysis

E-Commerce over the Internet

• Internet is attractive for e-commerce
 – Search for suppliers
 – Price negotiation
 – Ordering
 – Payment for goods
 – Delivery of information goods
 • Software, electronic books, etc.
• Challenges
 – No easily identifiable places of business
 – Transactions are subject to observation by their parties
 – Privacy
NetBill

- NetBill is a system developed to facilitate selling and delivery of low-priced information goods over the Internet.
 - Maintain accounts for customers as well as merchants, which are linked to banks
 - Transfer information goods from merchant to customer
 - Transfer money from customer’s account to merchant’s account.
 - Combine small transactions into larger conventional transactions, reducing transaction cost.

NetBill Transaction Model

- Three phases
 - Phase 1: Price negotiation
 - Phase 2: Goods delivery
 - Phase 3: Payment

NetBill Transaction Objectives

- Only authorized customers can charge against a NetBill account
- The customer and merchant must agree on the purchase item and the price
- A customer can optionally protect her identity from merchants
- Customers and merchants are provided with proof of transaction results from NetBill
- There is a negotiation phase between customer and merchant
- A customer may present credentials identifying her for special treatment
- A customer receives the goods if and only if she is charged for the goods
- A customer may need approval from a fourth party before the NetBill server will allow a transaction.
- The privacy and integrity of communications is protected from observation or alteration by external parties.
NetBill Transaction Protocol

- The basic protocol
 - Phase 1: price negotiation
 - \(C \Rightarrow M: \text{price request} \)
 - \(M \Rightarrow C: \text{price quote} \)
 - Phase 2: goods delivery
 - \(C \Rightarrow M: \text{goods request} \)
 - \(M \Rightarrow C: \text{goods, encrypted with a key K} \)
 - Phase 3: payment
 - \(C \Rightarrow M: \text{signed electronic payment order (EPO)} \)
 - \(M \Rightarrow N: \text{endorsed EPO (including K)} \)
 - \(N \Rightarrow M: \text{signed result (including K)} \)
 - \(M \Rightarrow C: \text{signed result (including K)} \)

Notations

- \(T_{CM}(Id): \text{Kerberos ticket proving to Y that X is named by Id, and establish a session key XY shared between them.} \)
- \(CC(M): \text{cryptographic checksum of M.} \)
- \(E_K(M): \text{M encrypted using key K.} \)
- \(E_{\text{X-PUB}}(M): \text{M encrypted using X’s RSA public key.} \)
- \(E_{\text{X-Pri}}(M): \text{M signed using X’s RSA private key.} \)
- \([M]_X: \text{M signed (with RSA) and timestamped by X.} \)
- \([M]_X-\text{DSA}: \text{M signed and timestamped by X with DSA.} \)
- \(\{M\}_X: \text{M encrypted for X using RSA.} \)

The Price Request Phase

1. \(C \Rightarrow M: T_{CM}(Id), E_{\text{CM}}(\text{Credentials, PRD, Bid, RequestFlags, TID}) \)
2. \(M \Rightarrow C: E_{\text{CM}}(\text{ProductID, Price, RequestFlags, TID}) \)

- \(T_{CM}(Id): \text{prove the identity of the customer} \)
- \(\text{Credentials}: \text{establish the customer’s membership} \)
- \(\text{PRD}: \text{product description} \)
- \(\text{RequestFlags}: \)
 - Message 1: request for the disposition of the transaction (e.g., Delivery method)
 - Message 2: merchant’s response to customer’s request
- \(\text{TID}: \)
 - Message 1: if this is a repeated request
 - Message 2: if this is not supplied by the customer
The Goods Delivery Phase

3. $C \Rightarrow M$: $T_{CM}(Id), E_{CM}(TID)$
5. $M \Rightarrow C$: $E_{C}(Goods), E_{TM}(CC(E_{K}(Goods)), EPOID)$

- M sends to C
 - An encrypted version of the goods
 - The cryptographic checksum of the encrypted goods
 - EPOID: electronic purchase order ID.
 - Merchant ID + a timestamp (delivery time) + a serial number
- Intuition:
 - Reduce the transaction to a fair exchange of K and the payment from C.
 - This fair exchange depends on the NetBill server.

The Payment Phase

5. $C \Rightarrow M$: $T_{CM}(Id), E_{CM}([EPO]_{C})$

- EPO consists of
 - Clear part:
 - C’s ID, Product ID, Price, M’s ID
 - $CC(E_{C}(Goods)), CC(PRDI), CC(CAcct, AcctVN)$
 - EPOID
 - Encrypted part:
 - T_{CM}(TrueID)
 - E_{CM}(Authorization, CAcct, AcctVN, Cmemo)

The Payment Phase (Cont’d)

6. $M \Rightarrow N$: $T_{MN}(M), E_{MN}([EPO]_{M}, MAcct, MMemo, K_{3M})$

- The merchant endorse and submit the EPO
 - MAcct: Merchant’s NetBill account
 - MMemo: merchant’s memo field
 - K: the key used to deliver the goods
- Point of no return
 - The merchant cannot reverse the transaction.
The Payment Phase (Cont’d)

7. $N \Rightarrow M: E_{\text{MD}}([\text{Receipt}]_{\text{N-DSA}}, E_{\text{CM}}(\text{EPOID}, \text{CAcct, Bal, Flags}))$

- The NetBill server makes decision based on verification of
 - The signatures
 - Privileges of the users involved
 - Customer’s account balance
 - Uniqueness and freshness of the EPOID

- Receipt
 - Result, Identity, Price, ProductID, M, K, EPOID
 - The signed receipt certifies the transaction

The Payment Phase (Cont’d)

8. $M \Rightarrow C: E_{\text{CM}}([\text{Receipt}]_{\text{N-DSA}}, E_{\text{CM}}(\text{EPOID}, \text{CAcct, Bal, Flags}))$

- Merchant forwards NetBill server’s response to customer
 - M needs to decrypt and re-encrypt

Status Query Exchange

- Needed when there is communication failure

The merchant requests the transaction status from NetBill

1. $M \Rightarrow N: T_{\text{MD}}(M), E_{\text{MD}}(\text{EPOID})$
2. $N \Rightarrow M: E_{\text{MD}}([\text{Receipt}]_{\text{N-DSA}}, E_{\text{CM}}(\text{EPOID, CAcct, Bal, Flags}))$

The customer requests the transaction status from the merchant

1. $C \Rightarrow M: T_{\text{CM}}(\text{Id}), E_{\text{CM}}(\text{EPOID})$
2. $M \Rightarrow C: E_{\text{CM}}([\text{Receipt}]_{\text{N-DSA}}, E_{\text{CM}}(\text{EPOID, CAcct, Bal, Flags}))$
Status Query Exchange (Cont’d)

The customer requests the transaction status from NetBill

1. \(C \Rightarrow N: T_{CN}(\text{TrueId}), E_{CN}(\text{EPOID}) \)

2. \(N \Rightarrow C: E_{CN}([\text{Receipt}]_{N-DSA}, E_{CN}(\text{EPOID}, \text{CAcc}, \text{Bal}, \text{Flags})) \)

The customer requests the transaction status from the merchant for a non-NetBill transaction

1. \(C \Rightarrow M: T_{CM}(\text{Id}), E_{CM}(\text{EPOID}) \)

2. \(M \Rightarrow C: E_{CM}(\text{Result}, \text{K}) \)

Zero-Priced Goods

- Protocol can be simplified
- Four variations
 - Type indicated in RequestFlags in the price request message
 - Zero-price certified delivery
 - Certified delivery without NetBill server
 - Verified delivery
 - Unverified delivery

Zero-Price Certified Delivery

1. \(C \Rightarrow M: T_{C}(\text{identity}), E_{C}(\text{Credential}, \text{PRD, Bal, RequestFlags, TID}) \)

2. \(M \Rightarrow C: E_{CM}(\text{ProductID, ProductID, RequestFlags, TID, E}_{C}(\text{Goods}), E_{C}(\text{AuthToken}, \text{EPOID})) \)

3. \(C \Rightarrow M: T_{C}(\text{identity}), E_{C}(\text{EPOID}) \)

4. \(M \Rightarrow N: T_{N}(\text{Id}), E_{N}(\text{EPOID, CAcc, Bal, Flags}) \)

5. \(N \Rightarrow M: E_{N}([\text{Receipt}]_{N-DSA}, E_{N}(\text{EPOID}, \text{CAcc, Bal, Flags})) \)

6. \(M \Rightarrow C: E_{C}(\text{Receipt})_{K} \)

Price negotiation can be omitted.

But delivery must be certified by NetBill.
Certified Delivery without NetBill

1. \(C \Rightarrow M \quad T_{CM}(\text{Identity}), E_{CM}(\text{Credentials, PRD, Bid, RequestFlags, TID}) \)
2/4. \(M \Rightarrow C \quad E_{CM}(\text{ProductID, Price=0, RequestFlags, TID}), E_{C}(\text{Goods}) \),
\(E_{CM}(\text{CC}(\text{Goods})), \text{EPOID} \)
5. \(C \Rightarrow M \quad T_{CM}(\text{Identity}), E_{CM}(\text{EPOID, CC}(\text{Goods})) \)
8. \(M \Rightarrow C \quad E_{CM}(\text{Result}, K) \)

- No need to go through NetBill.
- But C cannot recover if M decides not to send message 8.

Verified Delivery

1. \(C \Rightarrow M \quad T_{CM}(\text{Identity}), E_{CM}(\text{Credentials, PRD, Bid, RequestFlags, TID}) \)
2/4. \(M \Rightarrow C \quad E_{CM}(\text{ProductID, Price=0, RequestFlags, TID, Goods, CC}(\text{Goods})), \text{EPOID} \)
5. \(C \Rightarrow M \quad T_{CM}(\text{Identity}), E_{CM}(\text{EPOID, CC}(\text{Goods})) \)
8. \(M \Rightarrow C \quad E_{CM}(\text{Result}) \)

- Goods is encrypted with shared session key.
- C doesn’t have to wait for K.

Unverified Delivery

1. \(C \Rightarrow M \quad T_{CM}(\text{Identity}), E_{CM}(\text{Credentials, PRD, Bid, RequestFlags, TID}) \)
2/4. \(M \Rightarrow C \quad E_{CM}(\text{ProductID, Price=0, RequestFlags, TID, Goods, CC}(\text{Goods})) \)

- Eliminate the acknowledgement of goods delivery.
Failure Analysis

- Customer complaints
 - Incorrect or damaged goods
 - Can be resolved with the EPO, which contains a cryptographic checksum of the encrypted goods
 - Cannot deal with false advertisement
 - No decryption key
 - Can be resolved by a status query exchange with the NetBill server

Failure Analysis (Cont’d)

- Transaction dispute
 - Inconsistent price
 - Can be resolved by checking the EPO signed by the customer
 - Fraudulent transactions
 - Same resolution as above.

Failure Analysis (Cont’d)

- Merchant Complaints
 - Insufficient payment
 - Can be resolved by checking the receipt signed by NetBill
Identification and Authentication

- Public key based Kerberos
 - Each entity has public/private key pair with a certificate for the public key
 - Public key certificate is used to obtain a Kerberos server ticket

 1. \(C \Rightarrow M \ [\{\text{Identity, M, Timestamp, K}\}^M_K] \)
 2. \(M \Rightarrow C \ E_K(T_{CM}(\text{Identity}), \text{CM}) \)

Privacy protection

- Pseudonym mechanism
 - Implemented through a pseudonym-granting server \(P \).
 - Two methods
 - Per transaction
 - Use a unique pseudonym for each transaction
 - Per merchant
 - Use a unique pseudonym for each customer-merchant pair

Authorization

1. \(C \Rightarrow A \ T_{CA}(\text{Identity}, E_{CA}(M, \text{ProductID}, \text{Price}, CC(E_{KG}(\text{Goods})), \text{EPOID}, \text{CAcc})) \)

2. \(A \Rightarrow C \ E_{CA}(E_{A,priv}(CC(\text{Identity}, M, \text{ProductID}, \text{Price}, CC(E_{KG}(\text{Goods})), \text{EPOID}, \text{CAcc}))) \)

- Performed through an access control server \(A \).
 - Message returned by \(A \) is used as the authorization token in an EPO.