Outline

- Micropayment systems
 - Make small purchase over the Internet
- Two simple micropayment schemes
 - PayWord
 - MicroMint

PayWord and MicroMint

- Main goal
 - Minimize the number of public key operations
 - Use hash operations instead whenever possible
 - Hash functions are
 - 100 times faster than RSA signature verification
 - 10,000 times faster than RSA signature generation
PayWord

- Overview
 - Credit based scheme
 - Based on chains of paywords (hash values)
 - Broker gives a certificate to user to allow him/her to make paywords
 - User authenticates a complete chain to the vendor with a single public-key signature
 - User successively reveals each payword in the chain to make micropayment
 - Vendor gets money through broker.

PayWord (Cont’d)

- User-Broker relationship
 - User U establishes an account with broker B
 - Credit card number, expiration date, etc.
 - Broker B gives user U a certificate
 - Expiration date
 - Credit limit per vendor
 - Contact information of broker B
 - …
 - The certificate:
 - B will redeem authentic paywords produced by U turned in before the given expiration date.
 - Essentially allows U to produce paywords.

PayWord (Cont’d)

- User-Vendor relationships
 - Randomly choose \(w_0\), and compute the paywords
 - User U sends Vendor \(V\) her commitment \(M = \{ V, C_U, w_0, D, I_M \}_{SK_U}\)
 - Commitment is vendor-specific and user-specific

\(h\): one-way hash function

\[
\begin{align*}
& w_0 \\
& h \quad w_1 \\
& h \quad w_2 \\
& \vdots \\
& h \quad w_n
\end{align*}
\]
PayWord (Cont’d)

- **Payment**
 - A payment P from U to V
 - $P = (w_i, i)$
 - U spends her paywords in order
- **Variable-size payment**
 - Example: U has just paid $(w_3, 3)$. What should U send to V if she wants to pay 3 more cents?
 - (_____, ____)

PayWord (Cont’d)

- **Vendor-Broker relationship**
 - For each User U, Vendor V needs to send Broker B
 - The commitment M
 - The last payment $P=(w_l, l)$ received from U
 - Broker verifies M and each payment $P=(w_l, l)$
 - Questions:
 - What’s the cost of verifying $P=(w_l, l)$?
 - __________
 - What property(ies) of the hash function is used in PayWord?
 - __________

MicroMint

- **Overview**
 - No public key operations
 - For unrelated low-value payments
 - Broker produces MicroMint coins
 - A coin is a bit string whose validity can be checked by anyone
 - Users purchase the coins
 - Users give the coins to vendors as payments
 - Vendors return coins to broker in turn for payments by other means.
MicroMint (Cont’d)

• Coins
 – Each coin is represented by a k-way collision that has distinct x_i's.
 – The number of y-values that must be examined before one expects to see the first k-way collision is approximately
 $$2^{n-(k-1)/k},$$
 where n is the number of bits in y.

MicroMint (Cont’d)

• Minting coins
 – Equivalent to throwing balls into 2^n bins
 • Randomly select x_i and compute $y=h(x_i)$.
 – Throw approximately $k*2^n$ balls
 • Roughly $1/2$ of the bins have at least k balls.

MicroMint (Cont’d)

• Minting coins
 – Question: If there are more than k x’s in the same bin, can we make more than one coin out of it?
 – Balance computational and storage requirements
 • Good coins: a coin is good only when the high-order t bits are equal to a given value.
 • Reduce the storage requirements
 • Slow down the generation process
 – Tosses $k*2^n$ balls, but get $(1/2)*2^{n-t}$ coins.
MicroMint (Cont’d)

- Selling coins
 - Broker B remembers what coins User U gets
- Making payments
 - Vendor V can verify each coin
- Redemption
 - Vendor returns the coins to the broker
 - Broker checks coins and pays the vendor
 - Only pay for coins that have not been previously returned.

MicroMint (Cont’d)

- Double spending
 - Broker can detect doubly-spent coin
 - Broker can identify from which vendors he received such coins
 - Broker can link the doubly-spent coins with each user