What Is Broadcast Authentication?

- One sender; multiple receivers
 - All receivers need to authenticate messages from the sender.

Challenges in Broadcast Authentication

- Can we use symmetric cryptography in the same way as in point-to-point authentication?
- How about public key cryptography?
 - Effectiveness?
 - Cost?
- Research in broadcast authentication
 - Reduce the number of public key cryptographic operations
Outline

• Two schemes
 – TESLA
 • Sender authentication
 • Strong loss robustness
 • High scalability
 • Minimal overhead
 – EMSS
 • Non-repudiation
 • High loss robustness
 • Low overhead

TESLA - Properties

• Low computational overhead
• Low per packet communication overhead
• Arbitrary packet loss tolerated
• Unidirectional data flow
• No sender side buffering
• High guarantee of authentication
• Freshness of data
TESLA – Overview

- Timed Efficient Stream Loss–tolerant Authentication
- Based on timed and delayed release of keys by the sender
- Sender commits to a random key K and transmits the commitment to the receivers without revealing it
- Sender attaches a MAC to the next packet P_i with K as the MAC key
- Sender releases the key in packet P_{i+1} and receiver uses this key K to verify P_i
- Need a security assurance

TESLA – Scheme I

- Each packet P_{i+1} authenticates P_i
- Problems?
 - Security? Robustness?

TESLA – Scheme I (Cont’d)

- If attacker gets P_{i+1} before receiver gets P_i, it can forge P_i
- Security Condition
 - $Arr_{T_i} + \delta_i < T_{i+1}$
 - Receiver’s clock is no more than δ_i seconds ahead of that of the receivers
 - One simple way: constant data rate
- Packet loss not tolerated
TESLA – Scheme II

- Generate a sequence of keys \(\{K_i\} \) with one-way function \(F \)
- \(F^v(x) = F^{v-1}(F(x)) \)
- \(K_n = F^n(K_v) \)
- \(K_i = F^{n-i}(K_n) \)
- Attacker cannot invert \(F \) or compute any \(K_j \) given \(K_i \) where \(j > i \)
- Receiver can compute all \(K_j \) from \(K_i \) where \(j < i \)
 - \(K_j = F^{j-i}(K_i); K'_i = F'(K_i) \)

TESLA – Scheme II (Cont’d)

TESLA – Scheme III

- Remaining problems with Scheme II
 - Inefficient for fast packet rates
 - Sender cannot send \(P_{i+1} \) until all receivers receive \(P_i \)
- Scheme III
 - Does not require that sender wait for receiver to get \(P_i \) before it sends \(P_{i+1} \)
 - Basic idea: Disclose \(K_i \) in \(P_{i+1} \) instead of \(P_{i+1} \)
TESLA – Scheme III (Cont’d)

- Disclosure delay \(d \) = \(\left(\delta_{\text{Max}} + d_{\text{Max}} \right) r \)
 - \(\delta_{\text{Max}} \): maximum clock discrepancy
 - \(d_{\text{Max}} \): maximum network delay
 - \(r \): packet rate

- Security Condition:
 - \(\text{ArrT}_i + \delta_i < T_{i-d} \)

- Question:
 - Does choosing a large \(d \) affect the security?

TESLA – Scheme IV

- Deal with dynamic transmission rates
- Divide time into intervals
- Use the same \(K_i \) to compute the MAC of all packets in the same interval \(i \)
- All packets in the same interval disclose the key \(K_{i-d} \)
- Achieve key disclosure based on intervals rather than on packet indexes

TESLA – Scheme IV (Cont’d)
TESLA – Scheme IV (Cont’d)

- Interval index: \(i = \frac{(t - T_o)}{\Delta} \)
- \(K'_i = F'(K) \) for each packet in interval \(i \)
- \(P_j = \langle M_j, i, K_{i-d}, MAC(K'_i, M_j) \rangle \)
- Security condition:
 - \(i + d < i' \)
 - \(i' = \frac{(t_j + \delta - T_o) - \Delta}{\Delta} \)

- \(i' \) is the farthest interval the sender can be in

TESLA – Scheme V

- In Scheme IV:
 - A small \(d \) will force remote users to drop packets
 - A large \(d \) will cause unacceptable delay for fast receivers
- Scheme V
 - Use multiple authentication chains with different values of \(d \)
 - Receiver verifies one security condition for each chain \(C_i \) and drops the packet if none is satisfied

TESLA–Immediate Authentication

- \(M_{j+vd} \) can be immediately authenticated once packet \(j \) is authenticated
- Not to be confused with packet \(j + vd \) being authenticated
TESLA – Initial Time Synchronization

- \(R \rightarrow S \): Nonce
- \(S \rightarrow R \): \{Sender Time \(t_S \), Nonce, \(\ldots \)\} \(K_s^{-1} \)

\(R \) only cares the maximum time value at \(S \).

Max clock discrepancy:
\[\Delta T = t_S - t_R \]

EMSS

- Efficient Multichained Streamed Signature
- Useful where
 - Non Repudiation required
 - Time synchronization may be a problem
- Based on signing a small number of special packets in the stream
- Each packet linked to a signed packet via multiple hash chains

EMSS – Basic Signature Scheme
EMSS – Basic Signature Scheme (Cont’d)

- Sender sends periodic signature packets
- P_i is verifiable if there exists a path from P_i to any signature packet S_j

EMSS – Extended Scheme

- Basic scheme has too much redundancy
- Split hash into k chunks, where any k' chunks are sufficient to allow the receivers to validate the information
 - Rabin’s Information Dispersal Algorithm
 - Some upper few bits of hash
- Requires any k' out of k packets to arrive
- More robust