Background -- Localization

• Data usually combined with locations
 – Fire alarm, target tracking
• Traditional GPS
 – Expensive; does not work indoors
• GPS-less localization techniques
 – AHLoS, APS-AoA, DV-Hop, Centroid, APIT, etc.

Attacks against Localization

• Challenges in defending these attacks
 – Resource constraints on sensor nodes
 – Lack of physical protection
 – Local collaboration v.s. global threat
 – Difficulty of authenticating beacon signals
Range-Based Localization

- A few beacon nodes with known locations.
- Two phases:
 - Phase 1: Estimating distance (RSSI, TDoA, or ToA)
 - Phase 2: Solving equations by using MMSE

\[
\begin{align*}
 &= d_x^2 - d_y^2 + (x_y^2 - y_x^2) \\
 &= d_x^2 - d_y^2 + (x_y^2 - y_x^2) \\
 &= d_x^2 - d_y^2 + (x_y^2 - y_x^2)
\end{align*}
\]

\[\min F = f_1^2 + f_2^2 + f_3^2\]

A, B, C: beacon nodes

Impact of Malicious Attacks

- Obtained through simulation
- MMSE with 1 malicious beacon signal + 9 benign beacon signals
- A single malicious signal => arbitrarily large location error

Attack-Resistant Location Discovery

- Goal
 - Resilient location estimation when there are malicious location references
- Our approaches
 - Attack-resistant MMSE: identify “inconsistency” among malicious and benign beacon signals
 - Voting-based scheme: have each location reference vote on the location of the non-beacon node.
Assumptions

• Use a key management protocol that provides a unique pair-wise key between any two nodes.
 – E.g., TinyKeyMan
• This implies
 – Each sensor node is uniquely identified
 – Beacon packets can be authenticated
 • The content, not the signal

Assumptions (Cont’d)

• Each sensor node uses at most one beacon signal from each beacon node
 – Represented as a location reference \(< x_i, y_i, \delta_i >\)
 – Location of the beacon node and the measured distance.
• Attacker model
 – A malicious beacon node can provide arbitrary location references

Attack-Resistant MMSE

• Observation: there is “inconsistency” between benign and malicious location references
• Intuition: identify the most inconsistent location references before final estimation
• Consistency metric (\(\zeta_i^2\)): mean square error of distance measurement

\[
\zeta_i^2 = \sum_{m} \left[\delta_i - \sqrt{(\tilde{x}_i - x_i)^2 + (\tilde{y}_i - y_i)^2} \right]^2 \\
\leq \tau^2
\]
Attack-Resistant MMSE (Cont’d)

- Ideally, get the **largest consistent** set of location references
 - MMSE can achieve more accurate result with more benign location references
- **What we have**: check consistency, given a set of location references and a pre-defined threshold r
 - If $\varsigma^2 > r^2 \rightarrow$ inconsistent; otherwise, consistent
- **Two remaining questions**
 - How to determine the largest consistent set
 - How to set an appropriate threshold

Determining the Largest Consistent Set

- **A simple solution**
 - Try every combination of location references
 - Expensive: 10 location references, and 5 of them in the largest consistent set \rightarrow at least 387 MMSE operations
- **Greedy algorithm**
 - Multiple rounds
 - Remove the most inconsistent location reference in each round
 - Not guaranteed to find the largest consistent set

Greedy Algorithm

A set of m location references and a predefined threshold r

- **Consistency Test**
 - Find consistent set and output result
 - Fail to find consistent set

- $i > 3 \rightarrow$ fail to find consistent set
- 5 location references, and 5 of them in the largest consistent set \rightarrow 50 MMSE operations on average
Threshold τ

- Investigate the distribution of MSE ς^2 when there is no malicious attack
- If the measurement errors are independent, we have

$$\lim_{n \to \infty} F[\varsigma^2 \leq \varsigma_0^2] = \Phi\left(\frac{m\varsigma^2 - \mu'}{\sigma'}\right)$$

where μ_i and σ_i are the mean and variance of e_i^2, and

$$\mu' = \sum_{i} \mu_i, \sigma' = \sqrt{\sum \sigma_i^2}$$

Theoretical Results v.s. Simulation Results

The threshold should not be too small or too large.

Voting-Based Scheme

- Partition the target field into grid with M small squares (cells)
- Each location reference votes on the possible locations of node
- Identify the cell (or cells) with the largest vote
Overlap Test

- No overlap between the cell and the ring \(iif \)
 - The maximum distance from A to a point in the cell \(d_{\text{max}}(A) < \max(0, \delta - \epsilon) \), or
 - The minimum distance from A to a point in the cell \(d_{\text{min}}(A) > \delta + \epsilon \).

Granularity \(M \)

- Fine granularity (large \(M \)) results in high accuracy but high computation and storage cost,
- Coarse granularity (small \(M \)) results in low accuracy but low computation and storage cost.

Iterative Refinement

- Idea
 - Repeat the basic voting algorithm on the result of the last voting round
- Stop conditions
 - Achieve the required accuracy (size of cells)
 - Size of the cell cannot be reduced anymore
- We use the second stop condition in our experiments
Simulation Evaluation

- Evaluate the ability of the proposed methods to tolerate malicious attacks
- Three attack scenarios
 - One malicious location reference \((9 + 1)\)
 - Multiple non-colluding malicious location references \((9 + 3)\)
 - Multiple colluding malicious location references \((9 + 3)\)
- Configuration:
 - 30m X 30m target field
 - Radio signal range 22m
 - Distance error evenly distributed in \((-4, 4)\)

Evaluation of Attack-Resistant MMSE

![Graph showing location error vs. location estimation error for different scenarios.]

Evaluation of Voting-Based Scheme

![Graph showing location error vs. location estimation error for different scenarios.]
Comparison

Due to the non-optimal solution given by greedy algorithm.

Implementation

• Target at MICA2 motes running TinyOS

<table>
<thead>
<tr>
<th>Code Size (byte)</th>
<th>ROM</th>
<th>RAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSE</td>
<td>2,034</td>
<td>286</td>
</tr>
<tr>
<td>AR-MMSE</td>
<td>3,226</td>
<td>396</td>
</tr>
<tr>
<td>Voting-Based</td>
<td>4,488</td>
<td>174</td>
</tr>
</tbody>
</table>

Execution Time

1 malicious location reference $e = 4, v = 10$
Field Experiment

Use RSSI to measure distance
\[f = 4 \text{ feet} \]

\[\epsilon = 4 \text{ feet} \]

1 Malicious Beacon

Location error created by malicious beacon

Location estimation error

MMSE
AR-MMSE
Voting

3 Non-Colluding Malicious Beacons

Location error created by malicious beacon

Location estimation error
3 Colluding Malicious Beacons

![Graph showing location error created by malicious beacon]

Conclusion

- We have been investigating various techniques to secure localization in sensor networks
 - Prevention
 - Tolerance
 - Detection and response
- Future work
 - Light-weighted secure and resilient solutions
 - Secure and resilient localization for dynamic sensor networks