One-way Hash Chain

- Used for many network security applications
- Example: S/Key
- Good for authentication of the hash values

Properties of One-way Hash Chain

- Given K_i
 - Anybody can compute K_j, where $j<i$
 - It is computationally infeasible to compute K_j, where $l > i$, if K_i is unknown
 - Any K_j disclosed later can be authenticated by verifying if $H^i(K_i) = K_j$
 - Disclosing of K_{i+1} or a later value authenticates the owner of the hash chain
Merkle Hash Tree

• A binary tree over data values
 – For authentication purpose
• The root is the commitment of the Merkle tree
 – Known to the verifier.
• Example
 – To authenticate \(k_2 \), send \((k_2, m_3, m_0, m_47) \)
 – Verify \(m_07 = h(h(m_01 || h(f(k_2) || m_3)) || m_47)) \)

Merkle Hash Tree (Cont’d)

• Hashing at the leaf level is necessary to prevent unnecessary disclosure of data values
• Authentication of the root is necessary to use the tree
 – Typically done through a digital signature or pre-distribution
• Limitation
 – All leaf values must be known ahead of time

Bloom Filters

• It is used to verify that some data is not in the database (mismatch)
 – List of bad credit card numbers
 – Useful when the data consumes a very small portion of search space
• A Bloom filter is a bit string
• \(k \) hash functions that map the data into \(n \) bits in the Bloom filter
A Simple Example

- Use a bloom filter of 16 bits
 - \(H_1(key) = key \mod 16 \)
 - \(H_2(key) = key \mod 14 + 2 \)

- Insert numbers 27, 18, 29 and 28

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

- Check for 22:
 - \(H_1(22) = 6, H_2(22) = 10 \) (not in filter)

- Check for 51
 - \(H_1(51) = 3, H_2(51) = 11 \) (false positive)

Probability of False Positive

- Consider an \(m \)-bit Bloom filter with \(k \) hash functions
 - After inserting \(n \) elements, the probability of false positive

\[
\left(1 - \left(1 - \frac{1}{m}\right)^k\right)^n = \left(1 - e^{-kn/m}\right)^n.
\]

Client Puzzles

- The problem being addressed
 - Denial of Service (DoS) attacks

- Three basic constructions
 - Use pre-image of crypto hash functions
 - Use special image of crypto hash functions
 - Use constrained discrete logarithm problem (DLP)
Client Puzzle Based on Pre-image of Crypto Hash Functions

An Example Scenario: TCP SYN Flooding

Client Puzzle: Intuition
Client Puzzle: Intuition

- A puzzle takes an hour to solve
- There are 40 tables in restaurant
- Reserve at most one day in advance

A legitimate patron can easily reserve a table

An attacker has to reserve many tables to have a real impact
→ too many puzzles to solve

The Client Puzzle Protocol

Client

Service request M

Server

Buffer

O.K.
Puzzle Basis: Partial Hash Image

Pair \((X', Y)\) is \(k\)-bit-hard puzzle

Puzzle Basis (Cont’d)

- Only way to solve puzzle \((X', Y)\) is brute force method. (hash function is not invertible)
- Expected number of steps (hash) to solve puzzle: \(2^k / 2 = 2^{k-1}\)

Puzzle Construction

Client

Service request \(M\)

Server

Secret \(S\)
Puzzle Construction

Server computes:

- Secret S
- Time T
- Request M

Hash

Pre-image X

Hash

Image Y

Sub-puzzle

- Construct a puzzle consisting of m k-bit-hard sub-puzzles.
- Increase the difficulty of guessing attacks.
- Expected number of steps to solve: $m \times 2^{k-1}$.

Why not use $k+\log m$ bit puzzles?

- $(k+\log m)$-bit puzzle
 - Expected number of trials $m \times 2^{k-1}$

- But for random guessing attacks, the successful probability
 - One $(k+\log m)$-bit puzzle
 - $2^{k+\log m}$ (e.g., 2^{8k})
 - m k-bit subpuzzles
 - $(2^k)^m = 2^{km}$ (e.g., 2^{8k})
Puzzle Properties

- Puzzles are stateless
- Puzzles are easy to verify
- Hardness of puzzles can be carefully controlled
- Puzzles use standard cryptographic primitives

A Possible Way to use Client Puzzle

Client puzzle protocol (normal situation)

<table>
<thead>
<tr>
<th>Client</th>
<th>Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_i), “Puzzle?”</td>
<td>()</td>
</tr>
<tr>
<td>“No puzzle.”</td>
<td>Registers permission of (M_i)</td>
</tr>
<tr>
<td>(M_i)</td>
<td>()</td>
</tr>
</tbody>
</table>

\(M_i^j \) : first message of \(i\)-th execution of protocol \(M \)

Client puzzle protocol (under attack)

<table>
<thead>
<tr>
<th>Client</th>
<th>Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_i), “Puzzle?”</td>
<td>()</td>
</tr>
<tr>
<td>“Yes, puzzle.”, (P, t)</td>
<td>()</td>
</tr>
<tr>
<td>()</td>
<td>Verifies that (t_i \leq t) ()</td>
</tr>
<tr>
<td>()</td>
<td>Computes (k \leftarrow \text{PRG}(M_i)) ()</td>
</tr>
<tr>
<td>()</td>
<td>Verifies that solution is correct ()</td>
</tr>
<tr>
<td>()</td>
<td>Registers permission of (M_i) ()</td>
</tr>
<tr>
<td>(M_i)</td>
<td>()</td>
</tr>
</tbody>
</table>
Client Puzzle Based on Special Image of Crypto Hash Functions

Puzzle Construction

- $C \rightarrow S$: Hello
- $S \rightarrow C$: N_S
- $C \rightarrow S$: C, N_C, X
- S: verify $h(C, N_C, N_S, X)$ has k leading zeros

Expected Cost of Finding a Puzzle Solution

- Given puzzle strength k, the probability of finding a solution after x trials:

 $$P_{x,k} = 1 - (1 - 2^{-k})^x$$

- Expected number of trials to find a solution is 2^k
Client Puzzle based on Constrained Discrete Logarithm Problem

Context
– Client puzzle outsourcing for DoS resistance

Motivation
– Client puzzle mechanism can become the target of DoS attacks
 • Servers have to validate solutions which require resources
– Puzzles must be solved online
 • User time is more important than CPU time

Properties of the Solution
• The creation of puzzles is outsourced to a secure entity, the bastion
 – Create puzzle with no regard to which server is going to use them
• Verifying puzzle solutions is a table lookup
• Clients can solve puzzles offline ahead of time
• A puzzle solution gives access to a virtual channel for a short time period
C: A group of prime numbers with generator g

Pick $r_{c,t} \in \mathbb{Z}_q$

Let $g_{c,t} = g^{r_{c,t}}$, puzzle $x_{c,t} = (g_{c,t}, f'(a))$

Enumerate i values to solve $a_{c,t}$

Solution is $\sigma_{c,t} = Y_{1}^{f'(a)}$

Take the easy way

$\sigma_{c,t} = g_{c,t}^{X_1}$

Puzzle Properties

- **Unique puzzle solutions**
 - Each puzzle has a unique solution
- **Per-channel puzzle distribution**
 - Puzzles are unique per each (server, channel, time period) triplet
- **Per-channel puzzle solution**
 - If a client has a solution for one channel, he can calculate a solution for another server with the same channel easily
Secret Sharing

- **Objective**
 - Divide data D into n pieces D_1, \ldots, D_n in such a way that
 - Knowledge of any k or more D_i pieces makes D easy to compute,
 - Knowledge of any $k - 1$ or fewer D_i pieces leaves D completely undetermined.
 - Such a scheme is called a (k, n) threshold scheme.

- **Useful when no single entity can be trusted with the secret**
 - Management of cryptographic keys

Shamir’s Secret Sharing

- **Underlying fact**
 - Based on polynomial interpolation.
 - Given k points in the 2-d plane $(x_1, y_1), \ldots, (x_k, y_k)$ with distinct x_i’s,
 - there is one and only one polynomial $q(x)$ of degree $k - 1$ such that

 $$q(x_i) = y_i \text{ for all } i.$$
Shamir’s Secret Sharing (Cont’d)

- Split the secret D
 - To divide D into pieces D_i …
 - Pick a random \(k-1 \) degree polynomial
 \[q(x) = a_0 + a_1 x + \ldots + a_{k-1} x^{k-1} \]
 in which \(a_0 = D \).
 - Evaluate \(D_1 = q(1), D_2 = q(2), \ldots, D_n = q(n) \).

- The secret shares represent distinct points on the polynomial.

Shamir’s Secret Sharing (Cont’d)

- Reconstruction
 - Given any subset of \(k \) of these \(D_i \) values (with their identifying indices)
 • Find the coefficients of \(q(x) \) by interpolation,
 • Evaluate \(D = q(0) \).
 - Given just \(k-1 \) of these values,
 • \(D \) could be any value
 • In other words, \(D \) being any value will give one and only one possible polynomial
 - Alternatively, view these as linear equations.
Motivation

- IDA was developed to provide safe and reliable transmission of information in distributed systems.

- Inefficiency of retransmission of lost packets
 - In multicast transmission, different receivers lose different sets of packets.
 - Re-request and retransmission increases delays.

- Forward error correction technique might be desirable in distributed systems.

High-level Operations

- Dispersal(F, m, n):
 - Split input F with redundancy into n pieces $F_i (1 \leq i \leq n)$.
 - $|F_i|=|F|/m$, and $m \leq n$

- Recovery($\{F_i \mid 1 \leq j \leq m\}, 1 \leq i \leq n, m, n$):
 - Reconstruct F from any m out of the n pieces ($F_i (1 \leq i \leq n)$)

Dispersal(F, m, n) – Example 1

- $|F|=32$ bytes, $m=4$, $n=8$

 - $|F_i|=32/4=8$ bytes ($1 \leq i \leq m$)
Recovery($\{F_i \mid (1 \leq j \leq m), (1 \leq i \leq n)\}, m, n$) – Example 2

• $|F| = 32$ bytes, $m = 4$, $n = 8$, $|F| = 8$ bytes ($1 \leq i \leq 8$

• Assume the following 4 ($= m$) pieces are received.

\[
\begin{align*}
F_1 & \quad F_2 & \quad F_3 & \quad F_4 \\
\downarrow & & & \\
\text{Recovery}(F_1, F_3, F_4, 4, 8) & & & \\
\end{align*}
\]

Dispersal(F, m, n)

• $F = b_1, b_2, \ldots, b_N$

 - $N = |F|$, and b_i represents each byte in F ($0 \leq b_i \leq 255$).

 - All computations performed in $\mathbb{GF}(2^8)$.
 - $\mathbb{GF}(2^8)$ is closed under addition and multiplication.
 - Every nonzero element in $\mathbb{GF}(2^8)$ has a multiplicative inverse.

• $F = (b_1, b_2, \ldots, b_m), (b_{m+1}, \ldots, b_{2m}), \ldots, (b_{N-m+1}, \ldots, b_N)$

 - $S_i = (b_{i-m+1}, \ldots, b_i)$ ($1 \leq i \leq N/m$)

• The matrix $M_{n \times m}$ is constructed as follows:

 $M = [S_1, S_2, \ldots, S_{N/m}]$

Dispersal(F, m, n)

• The matrix $A_{n \times n}$ is constructed as follows:

\[
A = \begin{bmatrix}
 a_1 \\
 a_2 \\
 \vdots \\
 a_n
\end{bmatrix}
\]

- $a_i = (a_{i1}, \ldots, a_{in})$ ($1 \leq i \leq n$)

 - Every subset of m different vectors should be linearly independent.
Dispersal(F, m, n)

- The following Vandermonde matrix satisfies the property required for A:

\[
\begin{bmatrix}
1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\
1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\
1 & x_3 & x_3^2 & \cdots & x_3^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_n & x_n^2 & \cdots & x_n^{n-1}
\end{bmatrix}
\]

- $m \leq n$, and all x_i's are nonzero elements in $\text{GF}(2^8)$ and pairwise different.
- Any m different rows are linearly independent, so any matrix composed of a set of any m different rows is invertible.

\[A \cdot M = [S_1 \ S_2 \ \cdots \ S_{m \times n}] \begin{bmatrix}
a_1 \\
a_2 \\
\vdots \\
a_m \\
\end{bmatrix} = [F_1 \ F_2 \ \cdots \ F_m]
\]

where $a_i \cdot S_k = a_i b_{k(i-1)+1} + \cdots + a_i b_{km}$

\[|F|=32 \text{ bytes, } m=4, n=8 \]
- $F = b_1, b_2, \ldots, b_{32}$
- Represented as $M_{4 \times 8}$

\[
M = \begin{bmatrix}
S_1 & S_2 & \cdots & S_8
\end{bmatrix}
\begin{bmatrix}
b_1 & b_2 & \cdots & b_{32} \\
b_2 & b_3 & \cdots & b_{31} \\
b_3 & b_4 & \cdots & b_{30} \\
b_4 & b_5 & \cdots & b_{29}
\end{bmatrix}
\]
Dispersal(F, m, n) – Example 3

- $A_{8\times 4}$

\[A = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_8 \end{bmatrix} = \begin{bmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 1 & x_2 & x_2^2 & x_2^3 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_8 & x_8^2 & x_8^3 \end{bmatrix} \]

Dispersal(F, m, n) – Example 3

- F_i (1 ≤ i ≤ 8) are computed as follows:

\[A \cdot M = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_8 \end{bmatrix} \begin{bmatrix} S_i & S_i & \ldots & S_i \end{bmatrix} = \begin{bmatrix} a_1 \cdot S_i & a_2 \cdot S_i & \ldots & a_8 \cdot S_i \end{bmatrix} \begin{bmatrix} F_i \\ F_i \\ \vdots \\ F_i \end{bmatrix} = \begin{bmatrix} F_i \\ F_i \\ \vdots \\ F_i \end{bmatrix} \]

Recovery({F_i} | (1 ≤ i ≤ m), (1 ≤ j ≤ n)), m, n)

- Given m pieces F_i (1 ≤ f ≤ m), (1 ≤ j ≤ n),

\[\begin{bmatrix} F_1 \\ F_2 \\ \vdots \\ F_m \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix} \cdot M = A' \cdot M \]

- M can be recovered from the given m pieces F_i (1 ≤ f ≤ m), (1 ≤ j ≤ n) because A' is invertible.

\[\begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix} \begin{bmatrix} F_1 \\ F_2 \\ \vdots \\ F_m \end{bmatrix} = M \]

\[\begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix} \begin{bmatrix} F_1 \\ F_2 \\ \vdots \\ F_m \end{bmatrix} = M \]
Example 4

The original data \(M \) can be recovered by the following computation:

\[
\begin{bmatrix}
F_1 \\
F_2 \\
F_3 \\
F_4 \\
F_5
\end{bmatrix} = \begin{bmatrix}
a_1 \\
a_3 \\
a_4 \\
a_7
\end{bmatrix}^{-1} \begin{bmatrix}
a_1 \\
a_3 \\
a_4 \\
a_7
\end{bmatrix} \cdot M
\]

\(|F| = 32 \text{ bytes, } m = 4, n = 8 \)

In example 3, \(F_i \) (1 \(\leq i \leq 8 \)) pieces of 8 bytes are resulted.

Assume that \(\{ F_1, F_3, F_4, F_7 \} \) are received among them.

\[
\begin{bmatrix}
F_1 \\
F_2 \\
F_3 \\
F_4 \\
F_5
\end{bmatrix} = \begin{bmatrix}
a_1 \cdot S_1 & a_1 \cdot S_2 & \ldots & a_1 \cdot S_8 \\
a_3 \cdot S_1 & a_3 \cdot S_2 & \ldots & a_3 \cdot S_8 \\
a_4 \cdot S_1 & a_4 \cdot S_2 & \ldots & a_4 \cdot S_8 \\
a_7 \cdot S_1 & a_7 \cdot S_2 & \ldots & a_7 \cdot S_8
\end{bmatrix}
\]

\(\cdot M \)
Goals

• Authenticate without revealing credentials
 – Consider two groups G_1 and G_2
 – Two parties $A \in G_1$ and $B \in G_2$. A and B wants to authenticate each other.
 – If $G_1 \neq G_2$: A and B only know they are not in the same group.
 – If $G_1 = G_2$: A and B can authenticate to each other.
 – A third party learns nothing by observing conversations between A and B.

Preliminaries: Pairing-based Cryptography

• Bilinear Maps:
 – Two cyclic groups of large prime order q: G_1 and G_2
 – $\hat{\cdot}: G_1 \times G_1 \rightarrow G_1$ is a bilinear map if
 \[\forall a, b \in \mathbb{Z}_q; P, Q \in G_1; \hat{\cdot}(aP, bQ) = \hat{\cdot}(P, Q)^{ab} \]
 – $\hat{\cdot}$ should be computable, non-degenerate and satisfies Bilinear Diffie-Hellman assumption, i.e., given P, aP, bP, cP, it is hard to compute $\hat{\cdot}(P, P)^a$

Protocol Sketch

• Equipped with bilinear map $\hat{\cdot}$ and one-way hash function H_1
• CA has a master key t.
• Assume a driver-and-cop scenario.
Protocol Sketch

\[K_A = h(H("xy6542678d-cop"), T_A), \quad K_B = h(T_A, H("p65748392a-driver")) \]

Driver’s License:
"p65748392a", \(T_A \)

Traffic cop credential:
"xy6542678d", \(T_B \)

\(T_A = h_A(H("p65748392a-driver")) \)
\(T_B = h_B(H("xy6542678d-cop")) \)

Protocol Sketch – Attacker Igor

\[K_A = h(H("xy6542678d-cop"), T_A) \]

Driver’s License:
"p65748392a", \(T_A \)

Obtains Bob’s pseudonym
"xy6542678d"

\(T_A = h_A(H("p65748392a-driver")) \)

Secret-Handshake Scheme (SHS)

- SHS.CreateGroup(G): executed by an administrator, generates the group secret GroupSecretG for G.
- SHS.HandShake(A, B): Users A and B authenticate each other. B discovers A ∈ G if and only if A discovers B ∈ G.
- SHS.TraceUser: Administrator tells the user from a transcript T generated during conversation between A and B.
- SHS.RemoveUser: Administrator revokes user U.
Pairing-Based Handshake (PBH)

- **PBH.CreateGroup**: Administrator sets GroupSecret, as a random number $s_i \in \mathbb{Z}_q$.
- **PBH.AddUser**: Administrator generates pseudonyms for users:

 $$[\text{id}_1, \ldots, \text{id}_n]$$

 and then generates the corresponding secret points:

 $$\{\text{priv}_{i1}, \ldots, \text{priv}_{in}\}$$

 where

 $$\text{priv}_{i1} = s_i H_i(\text{id}_{i1})$$

 H_i is a one-way hash function.

Pairing-Based Handshake (PBH)

- **PBH.Handshake**:

 $A \xrightarrow{\text{id}_A, n_A} B$

 $A \xrightarrow{\text{id}_A, n_A, V_3} B$

 $A \xrightarrow{V'_i} B$

 $$V'_i = H_i(\hat{\epsilon}(H_i(\text{id}_A), \text{priv}_A)) | \text{id}_A | n_A | 0$$

 $$V'_i = H_i(\hat{\epsilon}(\text{priv}_A, H_i(\text{id}_A))) | \text{id}_A | n_A | 1$$

 $$S = H_i(\hat{\epsilon}(|\text{priv}_A, H_i(\text{id}_A))) | \text{id}_A | n_A | n_2 | 2$$

 $$= H_i(\hat{\epsilon}(H_i(\text{id}_A), \text{priv}_A)) | \text{id}_A | n_A | 0 | n_2 | 2$$

Pairing-Based Handshake (PBH)

- **PBH.TraceUser**: Since the conversations of handshaking include the pseudonyms, administrator can easily figure out the users.
- **PBH.RemoveUser**: Administrator removes user U by broadcasting its pseudonyms to all the other users, so that other users won’t accept pseudonyms of U.
Computational Diffie-Hellman Instead of Bilinear Diffie-Hellman

- **CreateGroup:** Administrator picks \((p, q, g)\), \(p\) and \(q\) are primes, \(g\) is a generator of a subgroup in \(\mathbb{Z}_p^*\) of order \(q\). Also, she picks up a private key \(x\), and computes the public key \(y = g^x \mod p\).

- **AddUser:** For user \(U\), administrator generates \(id_U\), and then generates a pair \((w, t)\) \(\in (\mathbb{Z}_p^*, \mathbb{Z}_q)\) so that \(g^t = wy^{D(w, ID)}\). \(id_U, w, t\) will be given to the user.

- **How to generate the pair \((w, t)\)?**
 - Randomly pick \(r\), compute \(w = g^r \mod p\)
 - \(t = r + xH(w, ID)\)

- **Handshake:** Assume user \(A\) has \((id_A, w_A, t_A)\) and user \(B\) has \((id_B, w_B, t_B)\).

- **Define notation (ElGamal Encryption):**
 - \(\text{Recover}(y, id, w) = PK = wy^{H(y||id) \mod p}\)
 - \(\text{Enc}_{id_m}(m) = [c_1, c_2] = [g^e \mod p, m \oplus H'(PK^e \mod p)]\)
 - \(\text{Dec}_{id_m}([c_1, c_2]) = m \oplus H'(c_1 \mod p)\)
Computational Diffie-Hellman Instead of Bilinear Diffie-Hellman

- **Handshake:**

 \[
 PK_A = \text{Recover}(y, id_A, w_A) \\
 \text{randomly picks } r_A, \text{ch}_A \\
 C_A = \text{Enc}_{y_A}(r_A) \\
 \text{verifies } \text{resp}_A \\
 r_A = \text{Dec}_{y_A}(C_A) \\
 \text{resp}_A = H(r_A, r_B, \text{ch}_B) \\
 \text{verifies } \text{resp}_A
 \]

- **Intuition:**

 - If A and B are in the same group, each of them can decrypt the random number \((r_A \text{ and } r_B) \).
 - If not, neither of them can get any information about \(r_A \text{ or } r_B \).