What Is Broadcast Authentication?

• One sender; multiple receivers
 – All receivers need to authenticate messages from the sender.

Challenges in Broadcast Authentication

• Can we use symmetric cryptography in the same way as in point-to-point authentication?

• How about public key cryptography?
 – Effectiveness?
 – Cost?

• Research in broadcast authentication
 – Reduce the number of public key cryptographic operations
Advanced Network Security

Topic 3.1 TESLA and EMSS

Outline

• Two schemes
 – TESLA
 • Sender authentication
 • Strong loss robustness
 • High scalability
 • Minimal overhead
 – EMSS
 • Non-repudiation
 • High loss robustness
 • Low overhead

TESLA – Overview

• Timed Efficient Stream Loss–tolerant Authentication
• Based on timed and delayed release of keys by the sender
• High level ideas
 – Sender commits to a random key K and transmits the commitment to the receivers without revealing it
 – Sender attaches a MAC to the next packet P_i with K as the MAC key
 – Sender releases the key in packet P_{i+1} and receiver uses this key K to verify P_i
TESLA – Scheme I

• Each packet P_{i+1} authenticates P_i
• Problems?
   – Security? Robustness?

TESLA – Scheme I (Cont’d)

• If attacker gets P_{i+1} before receiver gets P_i, it can forge P_i
• Security Condition
   – $ArrT_i + \delta < T_{i+1}$
   – Sender’s clock is no more than δ seconds ahead of that of the receivers
   – One simple way: constant data rate
• Packet loss not tolerated

TESLA – Scheme II

• Generate a sequence of keys $\{K_i\}$ with one-way function F
   – Randomly generate K_0
   – $K_0 = F^n(K_0)$
   – Commitment $K_0 = F^i(K_i)$
• Attacker cannot invert F or compute any K_j given K_i where $j > i$
• Receiver can compute all K_j from K_i, where $j < i$
   – $K_j = F^j(K_i)$; $K'_i = F^i(K_j)$
TESLA – Scheme II (Cont’d)

- Remaining problems with Scheme II
 - Inefficient for fast packet rates
 - Sender cannot send P_{i+1} until all receivers receive P_i
- Scheme III
 - Does not require that sender wait for receiver to get
 P_i before it sends
 - Basic idea: Disclose K_i in P_{i+d} instead of P_{i+1}

TESLA – Scheme III (Cont’d)

- Disclosure delay $d = \left\lfloor (\delta_{\text{Max}} + d_{\text{Max}}) r \right\rfloor$
 - δ_{Max}: maximum clock discrepancy
 - d_{Max}: maximum network delay
 - r: packet rate
- Security Condition:
 - $ArrT_i + \delta_i < T_{i+d}$
- Question:
 - Does choosing a large d affect the security?
TESLA – Scheme IV

• Deal with dynamic transmission rates
• Idea
 – Divide time into intervals
 – Use the same K_i to compute the MAC of all packets in the same interval i
 – All packets in the same interval disclose the key $K_{i,d}$
 – Achieve key disclosure based on intervals rather than on packet indexes

TESLA – Scheme IV (Cont’d)

• Interval index: $i = (t - T_p) / T_{\Delta}$
• $K_i' = F'(K_i)$ for each packet in interval i
• $P_j = \langle M_j, i, K_{i,d}, MAC(K_i', M_j, i, K_{i,d}) \rangle$
• Security condition:
 – $i + d < i'$
 – $i' = (t_j + \delta_t - T_p) / T_{\Delta}$
 – i' is the farthest interval the sender can be in
TESLA – Scheme V

- In Scheme IV:
 - A small d will force remote users to drop packets
 - A large d will cause unacceptable delay for fast receivers
- Scheme V
 - Use multiple authentication chains with different values of d
 - Receiver verifies one security condition for each chain C_i, and drops the packet if none is satisfied

TESLA–Immediate Authentication

- M_{j+vd} can be immediately authenticated once packet j is authenticated
- Not to be confused with packet $j+vd$ being authenticated

TESLA – Initial Time Synchronization

- $R \rightarrow S$: Nonce
- $S \rightarrow R$: (Sender Time t_s, Nonce, ...)K_s^{-1}

R only cares about the maximum time value at S.

Max clock discrepancy:
$\Delta_T = t_s - t_R$
EMSS

- Efficient Multichained Streamed Signature
- Useful where
 - Non Repudiation required
 - Time synchronization may be a problem
- Based on signing a small number of special packets in the stream
- Each packet linked to a signed packet via multiple hash chains

EMSS – Basic Signature Scheme

- Sender sends periodic signature packets
- P_i is verifiable if there exists a path from P_i to any signature packet S_j
EMSS – Extended Scheme

• Basic scheme has too much redundancy
• Split hash into \(k \) chunks, where any \(k' \) chunks are sufficient to allow the receivers to validate the information
 – Rabin’s Information Dispersal Algorithm
 – Some upper few bits of hash
• Requires any \(k' \) out of \(k \) packets to arrive
• More robust