Overview

• BiBa stands for “Bins and Balls”
 – Use one-way functions without trapdoors (e.g., hash functions)
• BiBa signature scheme
• BiBa broadcast authentication protocol

BiBa Signature Scheme

• Precompute SEALs
 – SEAL: SElf Authenticating vaLues
• Signature generation
 – Exploit SEALs and the difficulty of finding collisions under hash functions
• Signature verification
 – Verify SEAL
 – Verify collisions
SEAL

- Each SEAL is randomly generated
- Given a SEAL s, the signer computes $f_s = F_s(0)$, where F_s is a PRF
 - f_s is the commitment to s
 - f_s is authenticated to all possible verifiers (e.g., through a RSA signature or pre-distribution)
- In BiBa, the signer has t pre-computed SEALs
 - SEALs: $s_1, s_2, ..., s_t$
 - All SEALs are authenticated to all verifiers

BiBa Signature: Intuition

- Sign message m
 - Compute hash $h = H(m)$, where H is a hash function
 - Consider a hash function family G_h, whose range is $[0, n-1]$
 - Example: $G_h(i) = G_i(i)$, where G is SHA1
 - Compute G_h for all SEALs $s_1, ..., s_t$
 - That is, $G_h(s_1), G_h(s_2), ..., G_h(s_t)$
 - Look for a 2-way collision of SEALs
 - $G_h(s_i) = G_h(s_j)$ with $s_i \neq s_j$
 - The pair $<s_i, s_j>$ forms the signature
- Signature verification
 - Compute hash $h = H(m)$
 - Verify $s_i \neq s_j$ and $G_h(s_i) = G_h(s_j)$

Basic BiBa Scheme

![Diagram of BiBa Scheme]

- SEALs (SEALs): $s_1, s_2, s_3, ..., s_t$
- Bins (Range of G_h): G_h
- Signature
Security of BiBa Signature

- Security comes from
 - The difficulty of finding k-way collisions for one-way functions
 - The asymmetric property that the signer has more SEALs than the adversary
 - Signer can easily generate the BiBa signatures with high probability while adversary can’t.
- Exploits the birthday paradox
 - Probability that there is at least one collision of the hashes of t random messages is approximately
 $$1 - e^{-t(t-1)/2N}$$
 where N is range of hash function.

Security of BiBa Signature (Cont’d)

BiBa Signature Scheme

- Basic scheme
 - Signer is not guaranteed to find a signature
- BiBa Signature
 - Sign message m
 - $h_i = H(m|c)$, where c is a counter starting from 0
 - c is incremented if no signature is found
 - Compute G_i for all SEALs $s_1, ..., s_t$
 - Look for a k-way collision of SEALs
 - Verify signature
 - Verify the k SEALs are distinct
 - Verify that they have the same image
BiBa Broadcast Authentication Protocol

- Sender needs to authenticate potentially infinite stream of messages
- Sender can only disclose a small number of SEALs before attacker would have enough time to forge signature
 - Limit the number of messages that can be signed
- Solution
 - SEAL chains
 - Combination of SEALs and TESLA

SEAL Chains

\[
S_{i+1} = F_{S_{i+1}}(K_{i+1})
\]

Limitation

- High receiver computation overhead
 - Most of the SEALs are not used
 - To authenticate a SEAL, each receiver needs to re-compute many SEALs in a one-way SEAL chain
Extension A

- SEAL boundary

 SEALs above the boundary are disclosed

 SEAL boundary (0, 2, 3, 0, 1, 2)

- If attacker slows down the traffic to the receivers, ...
- Packet losses

Extension B

- To tolerate packet losses
 - Add SEAL boundary information to packets
 - More communication overhead, but also more robust
- Receivers still need to know the sending rate
 - Why?
Motivation

- BiBa
 - Fast signature verification, but
 - Signing cost is high
- Authors’ goal
 - Develop a one-time signature scheme with
 - Fast signing and verification

Preliminary: Bijective Function

- Bijective function
 - Each element of input is mapped onto one and only one element in output
 - Each element of output is mapped onto one and only one element in input
 - Intuitively, there is a one-to-one correspondence between elements of the two sets

Bijective Function S

- Let $T = \{1, 2, \ldots, t\}$
- S is a bijective function that outputs the m-th k-element subset of T
Initial Scheme: Based on One-way Functions

• Generalization of Bos and Chaum one-time signatures

• Key generation
 – Generate \(t \) numbers of random \(l \)-bit values
 – Let these be the private key: \(\text{SK} = (s_1, \ldots, s_t) \)
 – Compute the public key \(\text{PK} = (v_1, \ldots, v_t) \),
 • where \(v_i = f(s_i) \) and \(f() \) is a one-way function

Signature Generation and Verification

• Sign a \(b \)-bit message \(m \)
 – Use \(S \) to find the \(m \)-th \(k \)-element subset of \(T \): \(\{i_1, \ldots, i_k\} \)
 – The corresponding values \((s_{i_1}, \ldots, s_{i_k}) \) are the signature of \(M \)

• Verify message \(m \) and its signature \((s_1', \ldots, s_k') \)
 – Use \(S \) to find the \(m \)-th \(k \)-element subset of \(T \): \(\{i_1', \ldots, i_k'\} \)
 – Verify \(f(s_1') = v_{i_1'}, \ldots, f(s_k') = v_{i_k} \)

Efficiency Analysis

• Key generation
 – Requires \(t \) evaluations of the one-way function
 – Secret key size = \(l^t \)-bits
 – Public key size = \(f^t \)-bits
 • \(f^t \)-length of the one-way function output

• Signature generation
 – Time to find the \(m \)-th \(k \)-element subset of \(T \)
• Verification
 – Time to sign + \(k \) one-way function operations
Security

- Bijective function S
 - Each input corresponds to one and only one output
- Thus, each b-bit message m corresponds to a different k-element subset of T
 - Knowing the signature of one message, an attacker has to invert at least one of the remaining $t-k$ values in the public key to forge another signature

An Option for S

- Algorithm #1: $C(t, k) = C(t-1, k-1) + C(t-1, k)$
 - If the last element of T belongs to the subset, choose $k-1$ elements from the remaining $t-1$ elements
 - Otherwise, choose k elements from the remaining $t-1$ elements
- Input: (m, t, k)
- Steps:
 - If $m < C(t-1, k-1)$
 - Add t to output and recur on $(m, k-1, t-1)$
 - Else
 - Add nothing to output and recur on $(m - C(t-1, k-1), k, t-1)$

HORS: Based on Subset-Resilient Functions

- Replace the Bijective function S with a subset-resilient function H
 - $S(m)$ has k elements
 - S guarantees that no two distinct messages have the same k-element subset of T
 - $H(m)$ has at most k elements
 - H guarantees that it is infeasible to find two distinct messages m_1 and m_2 such that
 - $H(m_2)$ is a subset of $H(m_1)$
HORS Operations

Key Generation
- **Input:** Parameters L, k
- **Output:** $PK = (h, r_1, r_2, \ldots, r_k)$

Signing
- **Input:** Message m and secret key $SK = (h, r_1, r_2, \ldots, r_k)$
- **Output:** $\sigma = (s, m', m''_1, m''_2)$

Verifying
- **Input:** Signing $\sigma = (s, m', m''_1, m''_2)$ and public key $PK = (h, r_1, r_2, \ldots, r_k)$
- **Output:** success if $h = \text{hash}(m' || m''_1 || m''_2)$

Comparison with BiBa

<table>
<thead>
<tr>
<th></th>
<th>BiBa</th>
<th>HORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>is a random oracle</td>
<td>is a subset resilient function</td>
</tr>
<tr>
<td>Signing</td>
<td>2(t) calls to H (signer needs two trials on average)</td>
<td>One call to H</td>
</tr>
<tr>
<td>Verifying</td>
<td>4 calls to H</td>
<td>One call to H</td>
</tr>
</tbody>
</table>