Logical Key Hierarchy Protocol

March 31, 2003
Yiquan Hu

Overview

• Internet Draft, expired on Aug. 30, 1999
• Presents an implementation of Logical Key Hierarchy (LKH) Compromise Recovery (CR)
• Supplement of RFC2627: Key Management for Multicast: Issues and Architectures
Outline

• Background
 – Security for Multicast
• Compromise Recovery
 – Definitions, CR Policy, Requirements
• LKH CR Protocol Specification
 – Group Establishment, CR Policy and Enforcement
• Recommendations
• Summary

Background - Security for Multicast

• Multicasting allows a group of participants to communicate efficiently between themselves using public networks.
• Security has been a key area holding back widespread adoption of multicast.
• Challenge: providing effective method of controlling access to the group.
• Primary method: encryption of group information and selective distribution of the keys
Security for Multicast (Cont’d)

• Mechanisms used to secure the data while it is in transit between the multicast group members.
• Management of the security groups.
 1. Creation and distribution of keys.
 2. Enforcement of access control policies.
 3. Operational control (e.g., compromise recovery, rekey, identity infrastructure issues).

Outline

• Background
 – Security for Multicast
• Compromise Recovery
 – Definitions, CR Policy, Requirements
• LKH CR Protocol Specification
 – Group Establishment, CR Policy and Enforcement
• Recommendations
• Summary
Compromise Recovery - Definitions

- A group is a gathering of communicating members with a single key.
- If the group key is compromised, the secure communication must be restored through a recovery action.
- A compromise occurs when a member of the group can no longer be trusted (e.g. group member loses their key or a group member’s key is stolen).
- When this happens, the group needs to change the compromised keys, without giving the new keys to the compromised member.

Compromise Recovery Policy

- Restoration of Secure Network Operations
 - quickly and efficiently
- Restrict Compromise Recovery Actions to Authorized Individuals
 - Only authorized individuals should be allowed to identify that a compromise has occurred, assess the risk, and implement the necessary CR action.
- Secure Compromise Recovery Life-Cycle
 - Generation of CR materials, establishment of the CR group, execution of recovery from an event, and termination of CR for a group.
- System Stability After a Compromise
 - The outcome of any compromise event and the resulting CR action must leave the group capable of recovering from another compromise.
Compromise Recovery - Requirements

- Generation of LKH Arrays
 - Must be protected from unauthorized access.
- Generation of Support Materials
 - The LKH CR process will be supported by certificates.
 - The mechanisms and processes within the certificate registration process must be verifiable and protected from unauthorized access and disclosure.
- Secure Compromise Recovery
 - Identifying all group members
 - Identifying all CR agents
 - Verifying the authority for all sensitive acts
 - Verifying the integrity of all data exchanges
 - Protecting all information that could be used to attack the CR system
 - Verifying the assurance level of all CR computer components

LKH CR Requirements (Cont’d)

- Normal Operation Requirements
 - Minimal Exposure of LKH Arrays
 - Authentication of Identities
 - Verification of Authorization
 - Computer Security Trust Requirements
 - Cryptographic Structure of Groups
 - CR Message Requirements
 - Compromise Event Discovery and Reporting
Outline

- Background
 - Security for Multicast
- Compromise Recovery
 - Definitions, CR Policy, Requirements
- LKH CR Protocol Specification
 - Group Establishment, CR Policy and Enforcement
- Recommendations
- Summary

Group Establishment

- A large group can be serviced by several independent CR Agents each controlling a subset of the CR domain.
Generation of LKH Array

- Method 1: CR Manager generates a very deep array capable of encompassing all the potential members of the group.
- Method 2: CR Manager generates a smaller array capable of recovering all CR Agents. Each agent generates LKH array for his branch members.
 - Greater scalability for large groups
 - CR Manager and CR Agents must be identified to the group members prior to group establishment.

Distribution of LKH Array to Group Members

- The generator of the LKH array could distribute pieces of the array to authorized distribution points within the group for subsequent distribution.
- Establishment of SA (ISAKMP like)
 - Verification of all identities
 - Validation of public certificates (if used)
 - Creation of a pairwise traffic confidentiality key
 - Transfer of identity and certificate information to multicast security management protocol
Recovery Protocol

- CR Manage sends CR message to all members of its domain using the multicast address of the group.
- Each member verifies that the CR message is authentic and that the signature on that message comes from a party that is authorized to send a CR message.
- Each CR message contains a Date/Time stamp – CR messages are processed according to timestamp order.

CR Message Example

- Letters – virtual nodes
- Numerals – member nodes
- Member 1 is compromised
Example (Cont’d)

• Recovery Message:
 CompHdr{[Sec HdrB(MGK')B],
 [SecHdrD(MGK',A')D],
 [Sec Hdr2(MGK',C',A')2]
} Siglkhc

• Notation:
 – CompHdr{} = CR message header
 – [SecHdr*(MGK').] = Data packet containing a security
 header that allows the decryption of the data package
 encrypted in key * (in this case, the data packet contains
 MGK: Multicast Group Key Prime)
 – {}SigXo = Public key signature of data contained within
 {}, public key to verify is Xo.

Single Message to Exclude Compromised Member

• The CR Manager has been notified of the
 compromised status of member 1.
• The CR Agent in the compromise path generates a
 message using keys stored in its database that will
 exclude the compromised member from receiving the
 new group key:
 CompHdr{[SecHdrB(MGK0)B];
 [SecHdrD(MGK0;A0)D];
 [SecHdr1:1:2(MGK0; C0; A0)1:1:2]
} SigX1:1
• All nodes in the subgroup receive the message and
 each authorized member decrypts the new traffic key.
New Group Key

- The CR Manager sends a combination message to the delegated CR Agent (Member 1.1).
 - Notifies the compromise of its sub-nodes
 - Passes the new secure group key
- The CR Agent updates its group key, then begins CR actions for his domain

Summary

This document presents a Logical Key Hierarchy (LKH) Compromise Recovery (CR) implementation for the key management protocol suggested in RFC2627.
- Defines the CR method
- Identifies the requirements
- Defines the operational protocol
- Recommends an implementation
Questions?