A Key-Management Scheme for Distributed Sensor Networks

Stratimir Doichev
April 23, 2003
CSC 774 Network Security

Paper Overview

• Presents a key-management scheme designed to satisfy operational and security requirements of DSNs by selectively distributing and removing keys from sensor nodes as well as re-keying nodes without substantial computations or bandwidth usage.
Outline

- Background
 - Distributed Sensor Networks
 - Key Management in Distributed Sensor Networks
- Related Work
- Proposed Key-Management Scheme
 - Key Distribution
 - Key Revocation
 - Re-Keying
- Analysis
- Simulation Results and Scenario
- Conclusion and Future Work

Background: Distributed Sensor Networks

- Collection of battery powered sensor nodes
- Types of nodes:
 - Data-collection nodes: cache data and make it available for processing to application components within the network
 - Control-nodes: monitor the status of and broadcast simple commands to sensor nodes
- Dynamic in nature
- Communication/Computation constraints
 - Limited power and communication range
 - Typical asymmetric (public-key) cryptography too expensive
- Key-Management Issues
Background: Key-Management in DSN

- Traditional Internet style key distribution
 - Impractical due to unknown topology prior to deployment, communication range limitations, etc.

- Current key-management techniques:
 - Rely on key-predistribution
 - Single mission key
 - Inadequate due to security risks
 - Pair-wise privately shared keys
 - Requires the storage of (n-1) keys in each sensor, n(n-1)/2 per DSN
 - Addition, deletion, or re-keying of sensor nodes becomes very complex
 - Sensor nodes have on-chip memory limitations

Outline

- Background
 - Distributed Sensor Networks
 - Key Management in Distributed Sensor Networks
- Related Work
- Proposed Key Management Scheme
 - Key Distribution
 - Key Revocation
 - Re-Keying
- Analysis
- Simulation Results and Scenario
- Conclusion and Future Work
Related Work

• In the last decade key-management research has been primarily focused on broadcast and group communication.

• Group communication related work:

• Broadcast communication related work:

Outline

• Background
 – Distributed Sensor Networks
 – Key Management in Distributed Sensor Networks

• Related Work

• Proposed Key Management Scheme
 – Key Distribution
 – Key Revocation
 – Re-Keying

• Analysis

• Simulation Scenario and Results

• Conclusion and Future Work
Proposed Key-Management Scheme

- Relies on probabilistic key sharing among the nodes of a random graph and uses a simple shared-key discovery protocol
- Each sensor node has a key ring consisting of randomly chosen k keys from a large pool of P keys.
- Key Distribution
 - Key pre-distribution phase
 - Shared-key discovery phase
 - Path-key establishment phase
- Key Revocation
- Re-Keying

Key Distribution

- Phase 1: Key Pre-Distribution
 - Consists of 5 off-line steps:
 - Generate a large pool of P keys (2^17 – 2^20 keys)
 - Randomly choose (n times) k keys out of P without replacement
 - Load each set of keys (key ring) into each sensor node
 - Save key identifiers and associated sensor identifiers on the controller nodes
 - Load the identity and shared key (K_ci) of a controller node responsible for a particular sensor node into that node’s memory (shared key can be derived)
- Phase 2: Shared-Key Discovery
 - “Public” method → Each node broadcasts in clear text the key identifiers of the keys on their key ring
 - “Private” method → Each node broadcasts a list of challenges encrypted with each key (e.g. E_Ki(,), i=1,…,k)
Key Distribution cont’d

- **Phase 3: Path-Key Establishment**
 - Assigns a path key to selected pairs of sensor nodes that do not share a key but are connected by two or more links
 - Path keys need not be generated since after the second phase is finished a number of keys on a key ring are left unassigned.

Key Revocation

- Necessary when a node is compromised
- The controller node performs the following steps in order to revoke a key(s):
 - Creates a list of k key identifiers that has to be revoked
 - Generates a signature key, K_e, and unicasts it to each affected node by encrypting it with K_{ci} (the key shared with each node during the pre-distribution phase)
 - Signs the list of k key identifiers with K_e and broadcasts it
- Once the keys are removed from the designated key rings, some links may disappear and the affected nodes need to repeat the shared-key discovery phase and possibly the path-key establishment.
Re-Keying

- Sometimes keys expire and re-keying must take place.
- It doesn’t involve any broadcast messages from a controller node.
- After expired-key removal, the affected nodes restart the shared-key discovery and possibly path-key establishment phase.

Outline

- Background
 - Distributed Sensor Networks
 - Key Management in Distributed Sensor Networks
- Related Work
- Proposed Key Management Scheme
 - Key Distribution
 - Key Revocation
 - Re-Keying
- Analysis
- Simulation Scenario and Results
- Conclusion and Future Work
Analysis

- DSN Connectivity with Random Graphs
 - \(P \) → total number of available keys.
 - \(G(n, p) \) → a graph of \(n \) nodes for which the probability that a link exists between two nodes is \(p \).
 - \(d = p \times (n - 1) \) → expected degree of a node (i.e. the average number of edges connecting that node with its neighbors).

- Erdos and Rényi’s Equation:
 - Given a desired probability \(P_c \) for graph connectivity and number of nodes, \(n \), the threshold function \(p \) is defined by:
 \[
 P_c = \lim_{n \to \infty} \Pr[G(n, p) \text{ is connected}] = e^{\pi - c}
 \]
 - where
 \[
 p = \frac{\ln(n)}{n} + \frac{c}{n} \quad \text{and} \quad c \text{ is any real constant}.
 \]

Analysis cont’d

Figure 1: Expected degree of node vs. number of nodes, where \(P_c = \Pr[G(n, p) \text{ is connected}] \)
Analysis cont’d

- Given a neighborhood connectivity constraint requirement n_- and d, the probability of sharing a key between any two nodes in a neighborhood becomes:
 - $p__ = d/(n_-1)$
 - The following equation represents the relationship between P, $p__$ and k:

$$p' = 1 - \frac{\left(1 - \frac{k}{P}\right)^2(P-k+\frac{1}{2})}{\left(1 - \frac{2k}{P}\right)(P-2k+\frac{1}{2})}$$
Analysis cont’d

• Example 1:
 – Assume a DSN has 10,000 nodes and the resulting network should be connected
 with probability $P_c = 0.99999$. What is the average number of neighbors that
 each node is connecting with?
 – Answer:
 • Using Erdos and Rényi formula we get that $c = 11.5$
 • $p = \frac{\ln(n)}{n} + \frac{c}{n}$, we get $p = 0.002$
 • $d = p \times (n - 1)$, we get $d = 20.7 \approx 20$ nodes.

• Example 2:
 – Given that 75 keys are distributed out of 10,000 to every sensor node in a DSN,
 what is the probability that any two nodes share a key in their ring?
 – Answer:
 • $p__ = 0.4326 \approx 43.26\%$

Outline

• Background
 – Distributed Sensor Networks
 – Key Management in Distributed Sensor Networks

• Related Work

• Proposed Key Management Scheme
 – Key Distribution
 – Key Revocation
 – Re-Keying

• Analysis

• Simulation Scenario and Results

• Conclusion and Future Work
Simulation Scenario and Results

- **Purpose**
 - To evaluate the efficiency and scalability of the key distribution scheme

- **Setup**
 - Pool of 10,000 keys
 - A Distributed Sensor Network with 1000 nodes
 - Average density of 40 sensor nodes in a neighborhood
 - Each simulation is run 10 times

Simulation Scenario and Results

- **Effect on the network topology**

![Average path length graph](image)

Figure 3: Average path length at the network layer
Simulation Scenario and Results

![Graph showing the ratio of nodes reachable vs number of hops.]

Figure 4: Path length to neighbors

Simulation Scenario Results

- Effect of an attack against unshielded sensor nodes

![Graph showing the number of keys vs number of links where a key is used.]

NC State University Computer Science CSC 774 Network Security 23
Outline

• Background
 – Distributed Sensor Networks
 – Key Management in Distributed Sensor Networks

• Related Work

• Proposed Key Management Scheme
 – Key Distribution
 – Key Revocation
 – Re-Keying

• Analysis

• Simulation Scenario and Results

• Conclusion and Future Work

Conclusion and Future Work

• Conclusion
 – The results show that the proposed scheme is superior to the traditional key management techniques.
 – It is scalable and flexible with possible trade-offs between sensor-memory size and connectivity.
 – Provides better overall security given that a sensor node is compromised (i.e. attacker has a k/P chance of successfully attacking a link).

• Future Work
 – More detailed analyzes and simulations can be performed to further refine the relationships between k, the connectivity of the network and the overall pool of keys, P.
 – This scheme can be incorporated in the development of a LHAP for Distributed Sensor Networks.
Questions?