CSC 774 -- Network Security

Topic 4.1: IPSec

Outline

• IPSec Objectives
• IPSec architecture & concepts
• IPSec authentication header
• IPSec encapsulating security payload
IPSEC Objectives

• Why do we need IPSEC?
 – IP V4 has no authentication
 • IP spoofing
 • Payload could be changed without detection.
 – IP V4 has no confidentiality mechanism
 • Eavesdropping
 – Denial of service (DOS) attacks
 • Cannot hold the attacker accountable due to the lack of authentication.

IPSEC Objectives (cont’d)

• IP layer security mechanism for IPv4 and IPv6
 – Not all applications need to be security aware
 – Can be transparent to users
 – Provide authentication and confidentiality mechanisms.

IPSec Architecture (Cont’d)

- **Two Protocols (Mechanisms)**
 - Authentication Header (AH)
 - Encapsulating Security Payload (ESP)
- **IKE Protocol**
 - Internet Key Management
 - *Will be covered in topic 5.*
IPSec Architecture (Cont’d)

- Can be implemented in
 - Host or gateway
- Can work in two Modes
 - Tunnel mode
 - Transport mode

Hosts & Gateways

- Hosts can implement IPSec to connect to:
 - Other hosts in transport or tunnel mode
 - Or Gateways in tunnel mode
- Gateways to gateways
 - Tunnel mode
Tunnel Mode

- Encrypted Tunnel

A

Gateway

Encrypted

Gateway

B

Unencrypted

Unencrypted

New IP Header | AH or ESP Header | Orig IP Header | TCP | Data

Tunnel Mode (Cont’d)

- ESP applies only to the tunneled packet
- AH can be applied to portions of the outer header
Transport Mode

- New IP Header
- AH or ESP Header
- TCP
- Data

Transport Mode (Cont’d)

- ESP protects higher layer payload only
- AH can protect IP headers as well as higher layer payload
Security Association (SA)

- An association between a sender and a receiver
 - Consists of a set of security related parameters
 - E.g., sequence number, encryption key
- One way relationship
- Determine IPSec processing for senders
- Determine IPSec decoding for destination
- SAs are not fixed! Generated and customized per traffic flows

Security Parameters Index (SPI)

- A bit string assigned to an SA.
- Carried in AH and ESP headers to enable the receiving system to select the SA under which the packet will be processed.
- 32 bits
- SPI + Dest IP address + IPSec Protocol
 - identifies each SA in SA Database (SAD)
SA Database (SAD)

- Holds parameters for each SA
 - Sequence number counter
 - Lifetime of this SA
 - AH and ESP information
 - Tunnel or transport mode
- Every host or gateway participating in IPSec has their own SA database

SA Bundle

- More than 1 SA can apply to a packet
- Example: ESP does not authenticate new IP header. How to authenticate?
 - Use SA to apply ESP w/out authentication to original packet
 - Use 2nd SA to apply AH
Security Policy Database (SPD)

- Decide
 - What traffic to protect?
 - Has incoming traffic been properly secured?
- Policy entries define which SA or SA Bundles to use on IP traffic
- Each host or gateway has their own SPD
- Index into SPD by Selector fields
 - Selectors: IP and upper-layer protocol field values.
 - Examples: Dest IP, Source IP, Transport Protocol, IPsec Protocol, Source & Dest Ports, …

SPD Entry Actions

- Discard
 - Do not let in or out
- Bypass
 - Outbound: do not apply IPsec
 - Inbound: do not expect IPsec
- Protect – will point to an SA or SA bundle
 - Outbound: apply security
 - Inbound: security must have been applied
SPD Protect Action

- If the SA does not exist...
 - Outbound processing
 - Trigger key management protocols to generate SA dynamically, or
 - Request manual specification, or
 - Other methods
 - Inbound processing
 - Drop packet
Inbound Processing

Authentication Header (AH)

- Data integrity
 - Entire packet has not been tampered with
- Authentication
 - Can “trust” IP address source
 - Use MAC to authenticate
- Anti-replay feature
- Integrity check value
Integrity Check Value - ICV

- **Message authentication code (MAC) calculated over**
 - IP header fields that do not change or are predictable
 - IP header fields that are unpredictable are set to zero.
 - IPSec AH header with the ICV field set to zero.
 - Upper-level data
- **Code may be truncated to first 96 bits**

IPSec Authentication Header

[Diagram of IPSec Authentication Header]

- **SAD**
- **Next Header (TCP/UDP)**
- **Payload Length**
- **Reserved**
- **SPI**
- **Sequence Number**
- **ICV**
Encapsulated Security Protocol (ESP)

- Confidentiality for upper layer protocol
- Partial traffic flow confidentiality (Tunnel mode only)
- Data origin authentication and connectionless integrity (optional)

Outbound Packet Processing

- Form ESP payload
- Pad as necessary
- Encrypt result [payload, padding, pad length, next header]
- Apply authentication
Outbound Packet Processing...

- Sequence number generation
 - Increment then use
 - With anti-replay enabled, check for rollover and send only if no rollover
 - With anti-replay disabled, still needs to increment and use but no rollover checking

- ICV calculation
 - ICV includes whole ESP packet except for authentication data field.
 - Implicit padding of ‘0’ s between next header and authentication data is used to satisfy block size requirement for ICV algorithm
 - Not include the IP header.
Inbound Packet Processing

- Sequence number checking
 - Anti-replay is used only if authentication is selected
 - Sequence number should be the first ESP check on a packet upon looking up an SA
 - Duplicates are rejected!

<table>
<thead>
<tr>
<th>reject</th>
<th>Check bitmap, verify if new</th>
<th>verify</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Sliding Window size ≥ 32</td>
<td></td>
</tr>
</tbody>
</table>

Anti-replay Feature

- Optional
- Information to enforce held in SA entry
- Sequence number counter - 32 bit for outgoing IPSec packets
- Anti-replay window
 - 32-bit
 - Bit-map for detecting replayed packets
Anti-replay Sliding Window

- Window should not be advanced until the packet has been authenticated
- Without authentication, malicious packets with large sequence numbers can advance window unnecessarily
 - Valid packets would be dropped!

Inbound Packet Processing...

- Packet decryption
 - Decrypt quantity [ESP payload, padding, pad length, next header] per SA specification
 - Processing (stripping) padding per encryption algorithm; In case of default padding scheme, the padding field SHOULD be inspected
 - Reconstruct the original IP datagram
- Authentication verification (option)
ESP Processing - Header Location...

- **Transport mode IPv4 and IPv6**

 IPv4

<table>
<thead>
<tr>
<th>Orig IP hdr</th>
<th>ESP hdr</th>
<th>TCP</th>
<th>Data</th>
<th>ESP trailer</th>
<th>ESP Auth</th>
</tr>
</thead>
</table>

 IPv6

<table>
<thead>
<tr>
<th>Orig IP hdr</th>
<th>Orig ext hdr</th>
<th>ESP hdr</th>
<th>TCP</th>
<th>Data</th>
<th>ESP trailer</th>
<th>ESP Auth</th>
</tr>
</thead>
</table>

- **Tunnel mode IPv4 and IPv6**

 IPv4

<table>
<thead>
<tr>
<th>New IP hdr</th>
<th>ESP hdr</th>
<th>Orig IP hdr</th>
<th>TCP</th>
<th>Data</th>
<th>ESP trailer</th>
<th>ESP Auth</th>
</tr>
</thead>
</table>

 IPv6

<table>
<thead>
<tr>
<th>New IP hdr</th>
<th>New ext hdr</th>
<th>ESP hdr</th>
<th>Orig IP hdr</th>
<th>Orig ext hdr</th>
<th>TCP</th>
<th>Data</th>
<th>ESP trailer</th>
<th>ESP Auth</th>
</tr>
</thead>
</table>