CSC 774 -- Network Security

Topic 7.1: NetBill

Outline

• Why is NetBill developed?
• NetBill Transaction Model
• NetBill Transaction Protocol
 – Basic Protocol
 – Optimizations for zero-priced goods
• Failure Analysis
E-Commerce over the Internet

- Internet is attractive for e-commerce
 - Search for suppliers
 - Price negotiation
 - Ordering
 - Payment for goods
 - Delivery of information goods
 - Software, electronic books, etc.
- Challenges
 - No easily identifiable places of business
 - Transactions are subject to observation by their parties
 - Privacy

NetBill

- NetBill is a system developed to facilitate selling and delivery of low-priced information goods over the Internet.
 - Maintain accounts for customers as well as merchants, which are linked to banks
 - Transfer information goods from merchant to customer
 - Transfer money from customer’s account to merchant’s account.
 - Combine small transactions into larger conventional transactions, reducing transaction cost.
NetBill Transaction Model

- Three phases
 - Phase 1: Price negotiation
 - Phase 2: Goods delivery
 - Phase 3: Payment

![Diagram showing the transaction model]

NetBill Transaction Objectives

- Only authorized customers can charge against a NetBill account
- The customer and merchant must agree on the purchase item and the price
- A customer can optionally protect her identity from merchants
- Customers and merchants are provided with proof of transaction results from NetBill
- There is a negotiation phase between customer and merchant
- A customer may present credentials identifying her for special treatment
- A customer receives the goods if and only if she is charged for the goods
- A customer may need approval from a fourth party before the NetBill server will allow a transaction.
- The privacy and integrity of communications is protected from observation or alteration by external parties.
NetBill Transaction Protocol

- The basic protocol
 - Phase 1: price negotiation
 - $C \rightarrow M$: price request
 - $M \rightarrow C$: price quote
 - Phase 2: goods delivery
 - $C \rightarrow M$: goods request
 - $M \rightarrow C$: goods, encrypted with a key K
 - Phase 3: payment
 - $C \rightarrow M$: signed electronic payment order (EPO)
 - $M \rightarrow N$: endorsed EPO (including K
 - $N \rightarrow M$: signed result (including K
 - $M \rightarrow C$: signed result (including K

Notations

- $T_{XY}(Id)$: Kerberos ticket proving to Y that X is named by Id, and establish a session key XY shared between them.
- $CC(M)$: cryptographic checksum of M.
- $E_K(M)$: M encrypted using key K.
- $E_{X-PUB}(M)$: M encrypted using X’s RSA public key.
- $E_{X-Priv}(M)$: M signed using X’s RSA private key.
- $[M]_X$: M signed (with RSA) and timestamped by X.
- $[M]_{X-DSA}$: M signed and timestamped by X with DSA.
- $\{M\}_X$: M encrypted for X using RSA.
The Price Request Phase

1. $C \rightarrow M$: $T_{CM}(Id), E_{CM}(\text{Credentials, PRD, Bid, RequestFlags, TID})$
2. $M \rightarrow C$: $E_{CM}($ProductID, Price, RequestFlags, TID$)

- $T_{CM}(Id)$: prove the identity of the customer
- Credentials: establish the customer’s membership
- PRD: product description
- RequestFlags:
 - Message 1: request for the disposition of the transaction (e.g., Delivery method)
 - Message 2: merchant’s response to customer’s request
- TID:
 - Message 1: if this is a repeated request
 - Message 2: if this is not supplied by the customer

The Goods Delivery Phase

3. $C \rightarrow M$: $T_{CM}(Id), E_{CM}(TID)$
4. $M \rightarrow C$: $E_K($Goods$), E_{CM}(\text{CC}(E_K($Goods$)), EPOID)$

- M sends to C
 - An encrypted version of the goods
 - The cryptographic checksum of the encrypted goods
 - EPOID: electronic purchase order ID.
 - Merchant ID + a timestamp (delivery time) + a serial number
- Intuition:
 - Reduce the transaction to a fair exchange of K and the payment from C.
 - This fair exchange depends on the NetBill server.
The Payment Phase

5. C M: $T_{CM}(\text{Id}), E_{CM}([EPO]_C)$

- EPO consists of
 - Clear part:
 - C’s ID, Product ID, Price, M’s ID
 - CC(E_K(Goods)), CC(PRD), CC(CAacct, AcctVN)
 - EPOID
 - Encrypted part:
 - TCN(TrueID)
 - ECN(Authorization, CAacct, AcctVN, Cmemo)

The Payment Phase (Cont’d)

6. M N: $T_{MN}(M), E_{MN}([EPO]_C, \text{MAacct, MMemo, K}_M)$

- The merchant endorse and submit the EPO
 - MAacct: Merchant’s NetBill account
 - MMemo: merchant’s memo field
 - K: the key used to deliver the goods
- Point of no return
 - The merchant cannot reverse the transaction.
The Payment Phase (Cont’d)

7. \[N \rightarrow M: E_{MN}(\{\text{Receipt}\}_{N, \text{DSA}}, E_{CN}(\text{EPOID}, \text{CAcct}, \text{Bal}, \text{Flags})) \]

- The NetBill server makes decision based on verification of
 - The signatures
 - Privileges of the users involved
 - Customer’s account balance
 - Uniqueness and freshness of the EPOID
- Receipt
 - Result, Identity, Price, ProductID, M, K, EPOID
 - The signed receipt certifies the transaction

The Payment Phase (Cont’d)

8. \[M \rightarrow C: E_{CM}(\{\text{Receipt}\}_{N, \text{DSA}}, E_{CN}(\text{EPOID}, \text{CAcct}, \text{Bal}, \text{Flags})) \]

- Merchant forwards NetBill server’s response to customer
 - M needs to decrypt and re-encrypt
Status Query Exchange

• Needed when there is communication failure

The merchant requests the transaction status from NetBill

1. \text{M} \xrightarrow{} \text{N}: T_{MN}(M), E_{MN}(EPOID)
2. \text{N} \xrightarrow{} \text{M}: E_{MN}([\text{Receipt}]_{N-DSA}, E_{CN}(EPOID, CAcct, Bal, Flags))

The customer requests the transaction status from the merchant

1. \text{C} \xrightarrow{} \text{M}: T_{CM}(Id), E_{CM}(EPOID)
2. \text{M} \xrightarrow{} \text{C}: E_{CM}([\text{Receipt}]_{N-DSA}, E_{CN}(EPOID, CAcct, Bal, Flags))

Status Query Exchange (Cont’d)

The customer requests the transaction status from NetBill

1. \text{C} \xrightarrow{} \text{N}: T_{CN}(TrueId), E_{CN}(EPOID)
2. \text{N} \xrightarrow{} \text{C}: E_{CN}([\text{Receipt}]_{N-DSA}, E_{CN}(EPOID, CAcct, Bal, Flags))

The customer requests the transaction status from the merchant for a non-NetBill transaction

1. \text{C} \xrightarrow{} \text{M}: T_{CM}(Id), E_{CM}(EPOID)
2. \text{M} \xrightarrow{} \text{C}: E_{CM}(\text{Result}, K)
Zero-Priced Goods

- Protocol can be simplified
- Four variations
 - Type indicated in RequestFlags in the price request message
 - Zero-price certified delivery
 - Certified delivery without NetBill server
 - Verified delivery
 - Unverified delivery

Zero-Price Certified Delivery

1. $C \Rightarrow M \quad T_{CM}(\text{Identity}), E_{CM}(\text{Credentials, PRD, Bid, RequestFlags, TID})$

2/4. $M \Rightarrow C \quad E_{CM}(\text{ProductID, Price=0, RequestFlags, TID, } E_K(\text{Goods}), E_{CM}(\text{CC}(E_K(\text{Goods})), \text{EPOID}))$

5. $C \Rightarrow M \quad T_{CM}(\text{Identity}), E_{CM}[\text{EPO}]_C$

6. $M \Rightarrow N \quad T_{MN}(M), E_{MN}([\text{EPO}]_C, \text{MAcc}, \text{MMemo, } K_M)$

7. $N \Rightarrow M \quad E_{MN}([\text{Receipt}]_{N-DSA}, E_{CN}(\text{EPOID, CAcc, Bal, Flags}))$

8. $M \Rightarrow C \quad E_{CM}([\text{Receipt}]_{N-DSA}, E_{CN}(\text{EPOID, CAcc, Bal, Flags}))$

Price negotiation can be omitted.

But delivery must be certified by NetBill.
Certified Delivery without NetBill

1. \(C \rightarrow M\) \(T_{CM}(Identity), E_{CM}(Credentials, PRD, Bid, RequestFlags, TID)\)

2/4. \(M \rightarrow C\) \(E_{CM}(ProductID, Price=0), RequestFlags, TID), E_K(Goods), ECM(CC(E_K(Goods)), EPOID)\)

5. \(C \rightarrow M\) \(T_{CM}(Identity), E_{CM}(EPOID, CC(E_K(Goods)))\)

8. \(M \rightarrow C\) \(E_{CM}(Result, K)\)

- No need to go through NetBill.
- But C cannot recover if M decides not to send message 8.

Verified Delivery

1. \(C \rightarrow M\) \(T_{CM}(Identity), E_{CM}(Credentials, PRD, Bid, RequestFlags, TID)\)

2/4. \(M \rightarrow C\) \(E_{CM}(ProductID, Price=0), RequestFlags, TID, Goods, CC(Goods), EPOID)\)

5. \(C \rightarrow M\) \(T_{CM}(Identity), E_{CM}(EPOID, CC(Goods))\)

8. \(M \rightarrow C\) \(E_{CM}(Result)\)

- Goods is encrypted with shared session key.
- C doesn’t have to wait for K.
Unverified Delivery

1. \[C \Rightarrow M \rightarrow T_{CM}(\text{Identity}), \ E_{CM}(\text{Credentials, PRD, Bid, RequestFlags, TID}) \]

2/4. \[M \Rightarrow C \leftarrow E_{CM}(\text{ProductID, Price(=0), RequestFlags, TID, Goods, CC(Goods))} \]

- Eliminate the acknowledgement of goods delivery.

Failure Analysis

- Customer complaints
 - Incorrect or damaged goods
 - Can be resolved with the EPO, which contains a cryptographic checksum of the encrypted goods
 - Cannot deal with false advertisement
 - No decryption key
 - Can be resolved by a status query exchange with the NetBill server
• Transaction dispute
 – Inconsistent price
 • Can be resolved by checking the EPO signed by the customer
 – Fraudulent transactions
 • Same resolution as above.

• Merchant Complaints
 – Insufficient payment
 • Can be resolved by checking the receipt signed by NetBill
Identification and Authentication

- Public key based Kerberos
 - Each entity has public/private key pair with a certificate for the public key
 - Public key certificate is used to obtain a Kerberos server ticket

\[
1. \quad C \Rightarrow M \quad [\{\text{Identity}, \ M, \ \text{Timestamp}, \ K\}^M_C] \\
2. \quad M \Rightarrow C \quad E_K(T_{CM}(\text{Identity}), \ CM)
\]

Privacy protection

- Pseudonym mechanism
 - Implemented through a pseudonym-granting server P.
 - Two methods
 - Per transaction
 - Use a unique pseudonym for each transaction
 - Per merchant
 - Use a unique pseudonym for each customer-merchant pair
Authorization

1. $C \Rightarrow A$ $T_{CA}(Identity), E_{CA}(M, ProductID, Price, CC(E_K(Goods)), EPOID, CAcct)$
2. $A \Rightarrow C$ $E_{CA}(E_{A-PRJ}(CC(Identity, M, ProductID, Price, CC(E_K(Goods), EPOID, CAcct))))$

- Performed through an access control server A.
 - Message returned by A is used as the authorization token in an EPO.