CSC 774 -- Network Security

Topic 0. Basic Security Concepts

(For students who haven’t taken CSC 574)

Dr. Peng Ning

Information Security Problems

- Public, private, and government networks have been penetrated by unauthorized users and rogue programs
- Increased volume of security breaches attributed Computer Emergency Response Team (CERT) reports a tremendous increase in cracking incidents
- Insider attacks
Information Security Concerns

- Distributed Denial of Service (DDOS) attacks
- Worm attacks (e.g., code red)
- Monitoring and capture of network traffic
 - User IDs, passwords, and other information are often stolen on Internet
- Exploitation of software bugs
- Unauthorized access to resources
 - Disclosure, modification, and destruction of resources
- Compromised system used as hostile attack facility
- Masquerade as authorized user or end system
- Data driven attacks
 - Importation of malicious or infected code
- E-Mail forgery

Contributing Factors

- Lack of awareness of threats and risks of information systems
 - Security measures are often not considered until an Enterprise has been penetrated by malicious users
- Wide-open network policies
 - Many Internet sites allow wide-open Internet access
- Vast majority of network traffic is unencrypted
 - Network traffic can be monitored and captured
Contributing Factors (Cont’d)

- Lack of security in TCP/IP protocol suite
 - Most TCP/IP protocols not built with security in mind
 - Work is actively progressing within the Internet Engineering Task Force (IETF)
- Complexity of security management and administration
- Exploitation of software (e.g., protocol implementation) bugs
 - Example: Sendmail bugs
- Cracker skills keep improving

Security Objectives

- Secrecy (Confidentiality)
- Integrity
- Availability (Denial of Service)
Security Objectives

- Secrecy — Prevent/detect/deter improper disclosure of information
- Integrity — Prevent/detect/deter improper modification of information
- Availability — Prevent/detect/deter improper denial of access to services provided by the system

Note the use of improper rather than unauthorized
Authorized users are accountable for their actions

Commercial Example

- Secrecy — An employee should not come to know the salary of his manager
- Integrity — An employee should not be able to modify the employee's own salary
- Availability — Paychecks should be printed on time as stipulated by law
Military Example

• Secrecy — The target coordinates of a missile should not be improperly disclosed
• Integrity — The target coordinates of a missile should not be improperly modified
• Availability — When the proper command is issued the missile should fire

A Fourth Objective

• Securing computing resources — Prevent/detect/deter improper use of computing resources including
 – Hardware Resources
 – Software resources
 – Data resources
 – Network resources
Achieving Security

- Security policy — What?
- Security mechanism — How?
- Security assurance — How well?

Security Policy

Organizational Policy

Automated Information System Policy
Compusec + Comsec = Infosec

Security Mechanism

- Prevention — Access control
- Detection — Auditing and intrusion detection
- Tolerance — Practicality

Good prevention and detection both require good authentication as a foundation
Security Mechanism

• Security mechanisms implement functions that help *prevent*, *detect*, and *respond* to security attacks

 • Prevention is more fundamental
 – Detection seeks to prevent by threat of punitive action
 – Detection requires that the audit trail be protected from alteration

 • Sometime detection is the only option, e.g.,
 – Accountability in proper use of authorized privileges
 – Modification of messages in a network

 • Security functions are typically made available to users as a set of *security services* through APIs or integrated interfaces

 • Cryptography underlies (almost) all security mechanisms

Security Services

• Confidentiality: protection of any information from being exposed to unintended entities.
 – Information content.
 – Parties involved.
 – Where they are, how they communicate, how often, etc.

• Authentication: assurance that an entity of concern or the origin of a communication is authentic - it’s what it claims to be or from

• Integrity: assurance that the information has not been tampered with
Security Services - Cont’d

• Non-repudiation: offer of evidence that a party is indeed the sender or a receiver of certain information
• Access control: facilities to determine and enforce who is allowed access to what resources, hosts, software, network connections
• Monitor & response: facilities for monitoring security attacks, generating indications, surviving (tolerating) and recovering from attacks

Security Services - Cont’d

• Security management: facilities for coordinating users’ service requirements and mechanism implementations throughout the enterprise network and across the internet
 – Trust model
 – Trust communication protocol
 – Trust management infrastructure
Security Assurance

- **How well** your security mechanisms guarantee your security policy
- Everyone wants high assurance
- High assurance implies high cost
 - May not be possible
- Trade-off is needed.

Security by Obscurity

- Security by obscurity says that if we hide the inner workings of a system it will be secure
- It is a bad idea
- Less and less applicable in the emerging world of vendor-independent open standards
- Less and less applicable in a world of widespread computer knowledge and expertise
Security by Legislation

- Security by legislation says that if we instruct our users on how to behave we can secure our systems
- It is a bad idea
- For example
 - Users should not share passwords
 - Users should not write down passwords
 - Users should not type in their password when someone is looking over their shoulder
- User awareness and cooperation is important, but cannot be the principal focus for achieving security

Security Tradeoffs

Security Functionality

Ease of Use

COST
Threat-Vulnerability-Risk

• Threats — Possible attacks on the system
• Vulnerabilities — Weaknesses that may be exploited to cause loss or harm
• Risk — A measure of the possibility of security breaches and severity of the ensuing damage

• Requires assessment of threats and vulnerabilities

Risk Management

• Risk analysis
 – Mathematical formulae and computer models can be developed, but the underlying parameters are difficult to estimate.
• Risk reduction
• Risk acceptance
 – Certification
 • Technical evaluation of a system's security features with respect to how well they meet a set of specified security requirements
 – Accreditation
 • The management action of approving an automated system, perhaps with prescribed administrative safeguards, for use in a particular environment
Instructional Objectives

• Be able to explain the following concepts.
 – Security
 – three goals of information security
 – examples of attacks against the goals of information security
 – security policy
 – security mechanism
 – security assurance
 – typical security services
 • confidentiality, authentication, integrity, non-repudiation, access control, monitor & response, security management).