Topic 4.1: NetBill

Outline

- Why is NetBill developed?
- NetBill Transaction Model
- NetBill Transaction Protocol
 - Basic Protocol
 - Optimizations for zero-priced goods
- Failure Analysis
E-Commerce over the Internet

- Internet is attractive for e-commerce
 - Search for suppliers
 - Price negotiation
 - Ordering
 - Payment for goods
 - Delivery of information goods
 - Software, electronic books, etc.

- Challenges
 - No easily identifiable places of business
 - Transactions are subject to observation by their parties
 - Privacy

NetBill

- NetBill is a system developed to facilitate selling and delivery of low-priced information goods over the Internet.
 - Maintain accounts for customers as well as merchants, which are linked to banks
 - Transfer information goods from merchant to customer
 - Transfer money from customer’s account to merchant’s account.
 - Combine small transactions into larger conventional transactions, reducing transaction cost.
NetBill Transaction Model

- Three phases
 - Phase 1: Price negotiation
 - Phase 2: Goods delivery
 - Phase 3: Payment

NetBill Transaction Objectives

- Only authorized customers can charge against a NetBill account
- The customer and merchant must agree on the purchase item and the price
- A customer can optionally protect her identity from merchants
- Customers and merchants are provided with proof of transaction results from NetBill
- There is a negotiation phase between customer and merchant
- A customer may present credentials identifying her for special treatment
- A customer receives the goods if and only if she is charged for the goods
- A customer may need approval from a fourth party before the NetBill server will allow a transaction.
- The privacy and integrity of communications is protected from observation or alteration by external parties.
NetBill Transaction Protocol

- The basic protocol
 - Phase 1: price negotiation
 - C ⇒ M: price request
 - M ⇒ C: price quote
 - Phase 2: goods delivery
 - C ⇒ M: goods request
 - M ⇒ C: goods, encrypted with a key K
 - Phase 3: payment
 - C ⇒ M: signed electronic payment order (EPO)
 - M ⇒ N: endorsed EPO (including K)
 - N ⇒ M: signed result (including K)
 - M ⇒ C: signed result (including K)

Notations

- $T_{XY}(Id)$: Kerberos ticket proving to Y that X is named by Id, and establish a session key XY shared between them.
- $CC(M)$: cryptographic checksum of M.
- $E_K(M)$: M encrypted using key K.
- $E_{X-PUB}(M)$: M encrypted using X’s RSA public key.
- $E_{X-PRI}(M)$: M signed using X’s RSA private key.
- $[M]_X$: M signed (with RSA) and timestamped by X.
- $[M]_{X-DSA}$: M signed and timestamped by X with DSA.
- $\{M\}^X$: M encrypted for X using RSA.
The Price Request Phase

1. \(C \Rightarrow M: T_{CM}(Id), E_{CM}(Credentials, PRD, Bid, RequestFlags, TID) \)
2. \(M \Rightarrow C: E_{CM}(ProductID, Price, RequestFlags, TID) \)

- \(T_{CM}(Id) \): prove the identity of the customer
- \(Credentials \): establish the customer’s membership
- \(PRD \): product description
- \(RequestFlags \):
 - Message 1: request for the disposition of the transaction (e.g., Delivery method)
 - Message 2: merchant’s response to customer’s request
- \(TID \):
 - Message 1: if this is a repeated request
 - Message 2: if this is not supplied by the customer

The Goods Delivery Phase

3. \(C \Rightarrow M: T_{CM}(Id), E_{CM}(TID) \)
4. \(M \Rightarrow C: E_{K}(Goods), E_{CM}(CC(E_{K}(Goods)), EPOID) \)

- \(M \) sends to \(C \)
 - An encrypted version of the goods
 - The cryptographic checksum of the encrypted goods
 - \(EPOID \): electronic purchase order ID.
 - Merchant ID + a timestamp (delivery time) + a serial number
- \(Intuition \):
 - Reduce the transaction to a fair exchange of \(K \) and the payment from \(C \).
 - This fair exchange depends on the NetBill server.
The Payment Phase

5. $C \Rightarrow M: T_{CM}(Id), E_{CM}([EPO]_C)$

• EPO consists of
 – Clear part:
 • C’s ID, Product ID, Price, M’s ID
 • CC(E$_K$(Goods)), CC(PRD), CC(CAacct, AcctVN)
 • EPOID
 – Encrypted part:
 • T_{CN}(TrueID)
 • E_{CN}(Authorization, CAacct, AcctVN, Cmemo)

The Payment Phase (Cont’d)

6. $M \Rightarrow N: T_{MN}(M), E_{MN}([EPO]_C, MAacct, MMemo, K]_M)$

• The merchant endorse and submit the EPO
 – MAacct: Merchant’s NetBill account
 – MMemo: merchant’s memo field
 – K: the key used to deliver the goods

• Point of no return
 – The merchant cannot reverse the transaction.
The Payment Phase (Cont’d)

7. \[N \Rightarrow M: E_{MN}([\text{Receipt}]_{N-DSA}, E_{CN}(\text{EPOID, CAcct, Bal, Flags})) \]

- The NetBill server makes decision based on verification of
 - The signatures
 - Privileges of the users involved
 - Customer’s account balance
 - Uniqueness and freshness of the EPOID
- Receipt
 - Result, Identity, Price, ProductID, M, K, EPOID
 - The signed receipt certifies the transaction

The Payment Phase (Cont’d)

8. \[M \Rightarrow C: E_{CM}([\text{Receipt}]_{N-DSA}, E_{CN}(\text{EPOID, CAcct, Bal, Flags})) \]

- Merchant forwards NetBill server’s response to customer
 - M needs to decrypt and re-encrypt
Status Query Exchange

• Needed when there is communication failure

The merchant requests the transaction status from NetBill

1. $M \Rightarrow N$: $T_{MN}(M), E_{MN}(\text{EPOID})$
2. $N \Rightarrow M$: $E_{MN}([\text{Receipt}]_{N-DSA}, E_{CN}(\text{EPOID}, \text{CAcct, Bal, Flags}))$

The customer requests the transaction status from the merchant

1. $C \Rightarrow M$: $T_{CM}(\text{Id}), E_{CM}(\text{EPOID})$
2. $M \Rightarrow C$: $E_{CM}([\text{Receipt}]_{N-DSA}, E_{CN}(\text{EPOID}, \text{CAcct, Bal, Flags}))$

Status Query Exchange (Cont’d)

The customer requests the transaction status from NetBill

1. $C \Rightarrow N$: $T_{CN}(\text{TrueId}), E_{CN}(\text{EPOID})$
2. $N \Rightarrow C$: $E_{CN}([\text{Receipt}]_{N-DSA}, E_{CN}(\text{EPOID}, \text{CAcct, Bal, Flags}))$

The customer requests the transaction status from the merchant for a non-NetBill transaction

1. $C \Rightarrow M$: $T_{CM}(\text{Id}), E_{CM}(\text{EPOID})$
2. $M \Rightarrow C$: $E_{CM}(\text{Result}, K)$
Zero-Priced Goods

- Protocol can be simplified
- Four variations
 - Type indicated in RequestFlags in the price request message
 - Zero-price certified delivery
 - Certified delivery without NetBill server
 - Verified delivery
 - Unverified delivery

Zero-Price Certified Delivery

1. C \rightarrow M \quad T_{CM}(\text{Identity}), E_{CM}(\text{Credentials, PRD, Bid, RequestFlags, TID})
2. M \rightarrow C \quad E_{CM}(\text{ProductID, Price=0, RequestFlags, TID}), E_K(\text{Goods}), E_{CM}(CC(E_K(\text{Goods})), EPOID)
3. C \rightarrow M \quad T_{CM}(\text{Identity}), E_{CM}([EPO]_C)
4. M \rightarrow N \quad T_{MN}(M), E_{MN}([EPO]_C, MAccet, MMemo, K_M)
5. N \rightarrow M \quad E_{MN}([\text{Receipt}]_N, E_{CN}(EPOID, CAccet, Bal, Flags))
6. M \rightarrow C \quad E_{CM}([\text{Receipt}]_N, E_{CN}(EPOID, CAccet, Bal, Flags))

Price negotiation can be omitted.

But delivery must be certified by NetBill.
Certified Delivery without NetBill

1. \(C \rightarrow M \quad T_{CM}(\text{Identity}), \, E_{CM}(\text{Credentials, PRD, Bid, RequestFlags, TID}) \)

2/4. \(M \rightarrow C \quad E_{CM}(\text{ProductID, Price(=0), RequestFlags, TID}), \, E_{K}(\text{Goods}), \, E_{CM}(\text{CC}(E_{K}(\text{Goods})), \, EPOID) \)

5. \(C \rightarrow M \quad T_{CM}(\text{Identity}), \, E_{CM}(\text{EPOID, CC}(E_{K}(\text{Goods}))) \)

8. \(M \rightarrow C \quad E_{CM}(\text{Result, K}) \)

• No need to go through NetBill.
• But C cannot recover if M decides not to send message 8.

Verified Delivery

1. \(C \rightarrow M \quad T_{CM}(\text{Identity}), \, E_{CM}(\text{Credentials, PRD, Bid, RequestFlags, TID}) \)

2/4. \(M \rightarrow C \quad E_{CM}(\text{ProductID, Price(=0), RequestFlags, TID, Goods, CC}(\text{Goods}), \, EPOID) \)

5. \(C \rightarrow M \quad T_{CM}(\text{Identity}), \, E_{CM}(\text{EPOID, CC}(\text{Goods})) \)

8. \(M \rightarrow C \quad E_{CM}(\text{Result}) \)

• Goods is encrypted with shared session key.
• C doesn’t have to wait for K.
Unverifried Delivery

1. \(C \Rightarrow M \) \(T_{CM}(Identity), E_{CM}(Credentials, PRD, Bid, RequestFlags, TID) \)

2/4. \(M \Rightarrow C \) \(E_{CM}(ProductID, Price(=0), RequestFlags, TID, Goods, CC(Goods)) \)

• Eliminate the acknowledgement of goods delivery.

Failure Analysis

• Customer complaints
 – Incorrect or damaged goods
 • Can be resolved with the EPO, which contains a cryptographic checksum of the encrypted goods
 – Cannot deal with false advertisement
 – No decryption key
 • Can be resolved by a status query exchange with the NetBill server
Failure Analysis (Cont’d)

• Transaction dispute
 – Inconsistent price
 • Can be resolved by checking the EPO signed by the customer
 – Fraudulent transactions
 • Same resolution as above.

Failure Analysis (Cont’d)

• Merchant Complaints
 – Insufficient payment
 • Can be resolved by checking the receipt signed by NetBill
Identification and Authentication

- Public key based Kerberos
 - Each entity has public/private key pair with a certificate for the public key
 - Public key certificate is used to obtain a Kerberos server ticket

\[
\begin{align*}
1. & \quad C \rightarrow M \quad [\{\text{Identity, M, Timestamp, K}\}_C^M]_C \\
2. & \quad M \rightarrow C \quad E_K(T_{CM}(\text{Identity, CM}))
\end{align*}
\]

Privacy protection

- Pseudonym mechanism
 - Implemented through a pseudonym-granting server P.
 - Two methods
 - Per transaction
 - Use a unique pseudonym for each transaction
 - Per merchant
 - Use a unique pseudonym for each customer-merchant pair
Authorization

1. \(C \rightarrow A \) \(T_{CA}(\text{Identity}) \), \(E_{CA}(M, \text{ProductID}, \text{Price}, \text{CC}(E_K(\text{Goods})), \text{EPOID}, \text{CAcct}) \)

2. \(A \rightarrow C \) \(E_{CA}(E_{A-PRF}(\text{CC}(\text{Identity, M, ProductID, Price, CC}(E_K(\text{Goods}), \text{EPOID, CAcct})))) \)

- Performed through an access control server A.
 - Message returned by A is used as the authorization token in an EPO.