Topic 4.2: MicroPayments

Outline

- Micropayment systems
 - Make small purchase over the Internet
- Two simple micropayment schemes
 - PayWord
 - MicroMint
PayWord and MicroMint

• Mail goal
 – Minimize the number of public key operations
 – Use hash operations instead whenever possible
 • Hash functions are
 – 100 times faster than RSA signature verification
 – 10,000 times faster than RSA signature generation

PayWord

• Overview
 – Credit based scheme
 – Based on chains of paywords (hash values)
 – Broker gives a certificate to user to allow him/her to make paywords
 – User authenticates a complete chain to the vendor with a single public-key signature
 – User successively reveals each payword in the chain to make micropayment
 – Vendor gets money through broker.
PayWord (Cont’d)

• User-Broker relationship
 – User U establishes an account with broker B
 • Credit card number, expiration date, etc.
 – Broker B gives user U a certificate
 • Expiration date
 • Credit limit per vendor
 • Contact information of broker B
 • …
 – The certificate:
 • B will redeem authentic paywords produced by U turned in before the given expiration date.
 • Essentially allows U to produce paywords.

PayWord (Cont’d)

• User-Vendor relationships
 – Randomly choose \(w_n \), and compute the paywords
 – User U sends Vendor V her commitment
 \[M = \{ V, C_U, w_0, D, I_{MV} \}_{SK_U} \]
 – Commitment is vendor-specific and user-specific

\(h \): one-way hash function
PayWord (Cont’d)

• Payment
 – A payment P from U to V
 – $P = (w_i, i)$
 – U spends her paywords in order
 – Variable-size payment
 • Example: U has just paid $(w_3, 3)$. What should U send to V if she wants to pay 3 more cents?
 • $(____, ____)$

PayWord (Cont’d)

• Vendor-Broker relationship
 – For each User U, Vendor V needs to send Broker B
 • The commitment C_U
 • The last payment $P=(w_{l-1})$ received from U
 – Broker verifies C_U and each payment $P=(w_{l-1})$
 – Questions:
 • What’s the cost of verifying $P=(w_{l-1})$?
 – __________
 • What property(ies) of the hash function is used in PayWord?
 – __________
MicroMint

• Overview
 – No public key operations
 – For unrelated low-value payments
 – Broker produces MicroMint coins
 • A coin is a bit string whose validity can be checked by anyone
 – Users purchase the coins
 – Users give the coins to vendors as payments
 – Vendors return coins to broker in turn for payments by other means.

MicroMint (Cont’d)

• Coins
 – Each coin is represented by a k-way collision that has distinct \(x_i \)'s.
 – The number of \(x \)-values that must be examined before one expects to see the first k-way collision is approximately
 \[2^{n(k-1)/k} \], where \(n \) is the number of bits in \(y \).
MicroMint (Cont’d)

• Minting coins
 – Equivalent to throwing balls into 2^n bins
 • Randomly select x, and compute $y = h(x)$.
 – Throw approximately $k*2^n$ balls
 • Roughly 1/2 of the bins have at least k balls.

$\begin{array}{c}
 x \\
 h \\
 y = h(x) \\
\end{array}$

• Minting coins
 – Question: If there are more than k x’s in the same bin, can we make more than one coin out of it?
 • ________________________
 – Balance computational and storage requirements
 • Good coins: a coin is good only when the high-order t bits are equal to a given value.
 • Reduce the storage requirements
 • Slow down the generation process
 – Tosses $k*2^n$ balls, but get $(1/2)*2^{(n-t)}$ coins.
MicroMint (Cont’d)

• Selling coins
 – Broker B remembers what coins User U gets

• Making payments
 – Vendor V can verify each coin

• Redemption
 – Vendor returns the coins to the broker
 – Broker checks coins and pays the vendor
 • Only pay for coins that have not been previously returned.

MicroMint (Cont’d)

• Double spending
 – Broker can detect doubly-spent coin
 – Broker can identify from which vendors he received such coins
 – Broker can link the doubly-spent coins with each user