CSC 774 -- Network Security

Topic 4.3: Fair Exchange

Outline

• Overview of Fair Exchange
• Optimistic Fair Exchange
 – A General Protocol
 – Optimized Protocol
 • Contract signing
• Take-home reading
 – Optimized Protocols
 • Certified mail
 • Payment for receipt
 • Fair purchase
Fair Exchange

- A fair exchange should guarantee that at the end of the exchange
 - Either each party has received what it expects to receive,
 - Or no party has received anything
- Examples
 - Certified mail
 - Contract signing
 - Payment

Traditional Fair Exchange

- ISO proposals
 - Use a TTP to ensure fairness
- Limitations
 - TTP is heavily involved
 - Bottleneck
 - Single point of failure
Optimistic Fair Exchange

- **Assumptions**
 - Most participants are honest
- **Allow participants to exchange without TTP**
- **Fall back to TTP when there are failures**
 - Dishonest participants, communication failures, etc.

Three Phases of Optimistic Fair Exchange

- **Phase 1**
 - The parties try to exchange items without a TTP
- **Phase 2**
 - The parties try to exchange items through a TTP
- **Phase 3**
 - Each computer outputs all evidence and any participant may visit a court
Degree of Fairness

- **Strong (true) fairness**
 - If the TTP is able to
 - Undo a transfer of an item (revocability)
 - Example: revoke a signed contract
 - Produce a replacement for it (Generatability)
 - Example: generate a replacement of a receipt
- **Weak fairness**
 - If the TTP can only produce affidavits
 - Requires an external dispute resolution system
 - Example: court

Generic Exchange Protocol

- **Two stages**
 - Stage 1 (Two flows)
 - The originator O and the recipient R promise each other an exchange of items
 - Stage 2 (Three flows)
 - Exchange the items along with non-repudiation tokens
Notations

- \(\text{item}_X \): the item \(X \) wants to send
- \(\text{descr}_X \): a description of \(\text{item}_X \)
- \(\text{expect}_X(\text{descr}_X, \text{descr}_Y) \):
 - Evaluate to true if \(X \) is satisfied with exchanging \(\text{item}_X \) with \(\text{item}_Y \).
- \(\text{fits}(\text{descr}, \text{item}) \)
 - Evaluate to true if the description fits the item
- \(h() \): hash function
- \((\text{key}, \text{comm}) = \text{commit}(\text{item}) \)
 - Generate a commitment \(\text{comm} \) to \(\text{item} \), and also generate a \(\text{key} \), without which it’s impossible to get the item.
 - Verifiable encryption.
- \(\text{open}(\text{item}, \text{key}, \text{comm}) \)
 - Use \(\text{key} \) to open the \(\text{item} \) whose commitment is \(\text{comm} \).

Generic Exchange Protocol (Cont’)

<table>
<thead>
<tr>
<th>(\text{O})</th>
<th>(\text{T})</th>
<th>(\text{R})</th>
</tr>
</thead>
<tbody>
<tr>
<td>In: (\text{item}_O), (\text{descr}_O), (\text{expect}_O)</td>
<td></td>
<td>In: (\text{item}_R), (\text{descr}_R), (\text{expect}_R)</td>
</tr>
</tbody>
</table>

Choose \(y_O \) (recovery authenticator) \(r_O \) (NRR authenticator) randomly; determine \(T \)
\((\text{key}_O, \text{com}_O) := \text{commit}(\text{item}_O) \)

\[m_1 := \text{sign}_O(T, R, h(y_O), h(r_O), t, \text{com}_O, \text{descr}_O) \]

If not \(\text{expect}_R(\text{descr}_R, \text{descr}_O) \) then Abort;
Choose \(y_R \) (recovery authenticator) \(r_R \) (NRR authenticator) randomly;
\((\text{key}_R, \text{com}_R) := \text{commit}(\text{item}_R) \)

\[m_2 := \text{sign}_R(O, h(m_1), h(y_R), h(r_R), \text{com}_R, \text{descr}_R) \]
Generic Exchange Protocol (Cont’d)

O T R

\(\text{expect}_O(\text{descr}_O, \text{descr}_R) \)

\[m_3 := \text{item}_O, \text{key}_O \]

\[m_4 := \text{item}_R, \text{r}_R, \text{key}_R \]

If fits (\(\text{item}_R, \text{descr}_R \)) and open (\(\text{item}_R, \text{key}_R, \text{com}_R \)) and [no timeout] then

\[m_5 := r_O \]

Else [Recovery for O]

If [timeout] then [Recovery for R]

Output:

item_R
NRO Token: (m_2, key_R, com_R)
NRR Token: (m_1, m_2, r_R)

Output:

item_O
NRO Token: (m_1, key_O, com_O)
NRR Token: (m_1, m_2, r_O)

• Question:
 – Why can these tokens guarantee NRO or NRR?
Recovery for O

\[m := m_1, m_2, y_O \]

If [the received messages fit together] then
\[m_3 \text{ observable by } T \]
retransmit \(m_3 \).

If [retransmit invalid] then abort
else if [timeout] then
\[\text{open (item}_O, \text{key}_O, \text{com}_O)? \]
\[\text{fits (descr}_O, \text{item}_O)? \]
retransmit \(m_4 \), observable by \(T \).

\[m_T = \text{sign}_T(h(m)) \text{ or } \text{sign}_T("Cancel", h(m)) \]

Question

- Can this recovery protocol guarantee
 - Strong fairness for \(O \)?
 -
 - Weak fairness for \(O \)?
 -

Recovery for R

If [the received messages fit together] then
retransmit m_4, observable by T

If [retransmit invalid] then abort
if not [timeout] then

open $(item_R, key_R, com_R)?$
fits $(item_R, descr_R)?$

else

Question

• Can this recovery protocol guarantee
 – Strong fairness for R?
 • _____
 – Weak fairness for R?
 • _____
Types of items

- Confidential data
 - Data that will be released during the protocol
 - Example: Software
- Public data
 - Data that will be released even if the protocol execution fails
 - Purpose: fair exchange of non-repudiation tokens.
 - Example: contract
- Payments
 - A payment sub-protocol that is executed to transfer value from payer to payee
 - Example: PayWords

Types of Items (Cont’d)

- Generatable
 - The TTP can produce a replacement of the item
- Revocable
 - The TTP can undo the transfer of the item

<table>
<thead>
<tr>
<th></th>
<th>Public Data</th>
<th>Conf. Data</th>
<th>Payment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generatable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revocable</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exchange Types

<table>
<thead>
<tr>
<th>Public Data</th>
<th>Conf. Data</th>
<th>Payment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Data</td>
<td>Contract Signing</td>
<td>Payment with Receipt</td>
</tr>
<tr>
<td>Conf. Data</td>
<td>Exchange of Goods</td>
<td>Fair Purchase</td>
</tr>
<tr>
<td>Payment</td>
<td></td>
<td>Currency Exchange</td>
</tr>
</tbody>
</table>

Optimized Protocol -- Contract Signing

Choose o_o randomly; determine T

$m_1:=\text{sign}_o(T, R, h(o_o), t, \text{contract}_o)$

$m_2:=\text{sign}_R(h(m_1), h(y_R))$

$m_3:=o_o$

Choose y_R randomly, $\text{contract}_R=\text{contract}_o$?
Contract Signing (Cont’d)

If [timeout] then
\[m := m_1, m_2, y_R \]

If [the received messages fit together] then
\[m_2 \]

If [response] then
\[m_3 \]

else
\[m_4 := \text{sign}_R(h(m)) \]

Output:
contractR, (m1, m2)

Output:
contractR, (m1, o_o)

• Question:
 – Why can these tokens guarantee NRO or NRR?