m		
NC STATE UNIVER	RSITY Computer Science	
CS	SC 774 Network Security	
То	opic 5.1 Intrusion Alert Correlation	
Dr. Peng Ning	Spring 2003	1

- How to represent IDS alerts (detected attacks)?
- Given a hyper-alert type T = (fact, prerequisite, consequence), a hyper-alert (instance) h of type T is a finite set of tuples on fact, where each tuple is associated with an interval-based timestamp [begin_time, end_time].
 - Allow aggregation of the same type of hyper-alerts.
- Question: Why "a finite set of ..."?

NC STATE UNIVERSITY Computer Science Dr. Peng Ning

Peng Ning CSC 774 Network Security

11

Implementation (Cont'd)

- Correctness
 - Assumption 1: Given a set P of predicates, for all instantiations of the arguments in P, deriving all predicates implied by P followed by instantiating all arguments ⇔ instantiating all the arguments and then deriving all the implied predicates.
 - Implication between predicates are true for all attribute values.
 - <u>Assumption 2</u>: All predicates are uniquely identified by names, the special characters "(", ")", and "," do not appear in names and arguments, and the order of arguments in each predicate is fixed.
 - <u>Theorem</u>: Under assumptions 1 and 2, our implementation method discovers all and only hyper-alert pairs such that the first one of the pair prepares for the second one.

25

NC STATE UNIVERSITY Computer Science Dr. Peng Ning CSC 774 Network Security

<section-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item>

 Experimental Evaluation

 • Purposes of experiments

 - How well can the proposed method construct attack scenarios?

 - Can alert correlation help differentiate between true and false alerts?

		Abilit	y to Di	itteren	tiate Ale	erts		
Dataset		#observable attacks	Tool	#alerts	#detected attacks	Detection rate	#true alerts	False Alert Rate
	DMZ	89	Before	891	51	57.30%	57	93.6%
LLDOS 1.0			After	57	50	56.18%	54	5.26%
	inside	60	Before	922	37	61.67%	44	95.23%
			After	44	36	60%	41	6.82%
LLDOS 2.0.2	DMZ	7	Before	425	4	57.14%	6	98.59%
			After	5	3	42.86%	3	40%
	inside	15	Before	489	12	80%	16	96.73%
			After	13	10	66.67%	10	23.08%