Background

- Intrusion detection forms the second line of defense
- But current Intrusion Detection Systems (IDSs) are still not perfect
 - False negatives (missed attacks)
 - False positives (false alerts)
 - Large numbers of alerts
- It is challenging to understand
 - What are the intrusions
 - What the intruders have done
Background (Cont’d)

- A common problem of most existing alert correlation methods
 - Cannot handle missed attacks.
- Abductive correlation [Cuppens and Miege 2002]
 - Hypothesis of missed attacks are guided by known attack scenarios specified in LABMDA

Our Contributions

- A framework to **automatically** hypothesize and reason about missed attacks based on **knowledge about individual attacks**
 - Hypotheses of missed attacks
 - Inference of attack attributes
 - Validation of hypothesized attacks
 - Consolidation of hypothesized attacks
- Prototype implementation and initial experimental evaluation of this approach
Outline

• A series of techniques to hypothesize and reason about attacks missed by IDSs
 – A naïve approach
 – Type graph guided hypothesis
 – Inferring the attribute values of hypothesized attacks
 – Validation/pruning through raw audit data
 – Consolidation of hypothesized attacks

• Experimental results
• Conclusion and future work

Previous Work: Correlation Based on Prerequisites and Consequences of Attacks

• Model
 – Hyper-alert type: represent our knowledge as prerequisites and consequences of attacks
 – Hyper-alert: an instance of a hyper-alert type; instantiated from IDS alerts
 – An earlier hyper-alert prepares for a later one if the former makes the later easier to be successful

\[
C(h_1) = \{\text{VulnerableSadmind}(152.1.19.5)\} \quad P(h_2) = \{\text{ExistHost}(152.1.19.5), \text{VulnerableSadmind}(152.1.19.5)\}
\]
Previous Work (Cont’d)

- An example hyper-alert correlation graph
 - Would be split into multiple graphs if critical attacks are missed by the IDSs

![Hyper-Alert Correlation Graph]

Naïve Approach

- Integrate complementary correlation methods
 - Clustering correlation methods
 - Based on the similarity between alert attribute values
 - May still cluster related alerts even if critical attacks are missed
 - Unable to discover the causal relationships between alerts
 - Causal correlation methods
 - Based on prerequisites and consequences of attacks
 - May discover the causal relationships between alerts
 - Don’t work if critical attack steps are missed
Naïve Approach (Cont’d)

• Put multiple attack scenarios together if the clustering correlation method says they are similar
• But …
 – How about the possible causal relationships between these alerts?

Naïve Approach (Cont’d)

• Given attack types T and T’, T may prepare for T’ if
 – Informally, a type T attack may contribute to a type T’ attack

• T may indirectly prepare for T’ if
 – Informally, a type T attack may indirectly contribute to a type T’ attack through other intermediate attacks
Naïve Approach (Cont’d)

- *May-indirectly-prepare-for* relations can help hypothesize missed attacks
 - More complete attack scenarios

```
ICMP_PING_NMAP1
  -->
SCAN_NMAP_TCP2
  -->
Rsh3
  -->
Mstream_Zombie4
```

Type Graph Guided Approach

- *May-prepare-for* and *may-indirectly-prepare-for* relations give us more opportunities
 - We may use them to hypothesize about what have been missed by the IDSs

```
SCAN_NMAP_TCP
  -->
T

FTP_Glob_Expansion
T

Rsh
T'
```
Type Graph Guided Approach (Cont’d)

A type graph over a set of known attacks

- Note: A type graph is computed automatically over a given set of attack types

A Type Graph Guided Approach (Cont’d)

Hypotheses of Missed Attacks
Reasoning about the Hypotheses

• How do we know these are good hypotheses?
• Equality constraint
 – Represent dependency between adjacent attack steps
 – An equality constraint for two hyper-alert types (or attack types) \(T_1 \) and \(T_2 \) is a conjunction of equalities \(u_1 = v_1 \land \ldots \land u_n = v_n \),
 – where \(u_1, \ldots, u_n \) are attributes of \(T_1 \), and \(v_1, \ldots, v_n \) are attributes of \(T_2 \),
 – such that if a type \(T_1 \) hyper-alert \(h_1 \) and a type \(T_2 \) hyper-alert \(h_2 \) satisfy this condition, then \(h_1 \) prepares for \(h_2 \)

\[T_1 \text{ prepares for } T_2 \] if and only if they satisfy at least one equality constraint

\[
\text{ExistService}(\text{DestIP}, \text{DestPort}) \quad \text{ExistService}(\text{DestIP}, \text{DestPort})
\]

\[T_1.\text{DestIP}=T_2.\text{DestIP} \land T_1.\text{DestPort}=T_2.\text{DestPort} \]

Reasoning about The Hypotheses (Cont’d)

• Indirect equality constraint

\[
\{n2.\text{DestIP}=n4.\text{DestIP}
\land n2.\text{DestPort}=n4.\text{DestPort}\} \quad \{n4.\text{DestIP}=n5.\text{DestIP}
\land n4.\text{DestPort}=n5.\text{SrcIP}\}
\]

\[n2.\text{DestIP}=n5.\text{DestIP} \text{ or } n2.\text{DestIP}=n5.\text{SrcIP} \]

• Use indirect equality constraints to verify the hypothesized indirect causal relationships
Reasoning about Missed Attacks (Cont’d)

- Pre-computation of the indirect equality constraints
 - For each pair of attack types
 - For each path between these two attack types
 - For each combination of (direct) equality constraints between adjacent attack types in the path
 » Derive the equality conditions
 - Store the indirect equality constraint in a constraint matrix
- Check against the pre-computed indirect constraints when hypothesizing missed attacks

Infer Attribute Values of Hypothesized Attacks

- **SCAN_NMAP_TCP2**
 - DestIP = 10.10.10.2; DestPort = 21
- **Rsh3**
 - DestIP = 10.10.10.2
- **FTP_Glob_Expansion6**
 - DestIP = 10.10.10.2; DestPort = 21
 - Timestamp in [SCAN_NMAP_TCP2.end_time, Rsh3.begin_time]
Validating and Pruning via Raw Audit Data

- Filtering conditions for hypothesized attacks
 - Prior knowledge
 - protocol = ftp (FTP_Glob_Expansion)
 - Inferred attribute values
 - protocol = ftp \^ DestIP = 10.10.10.2
 - Possible range of Timestamp
 - protocol = ftp \^ DestIP = 10.10.10.2 \^ TS in [11:00AM, 11:10AM]

Again, have we hypothesized the right attacks?

An Example

- There doesn’t exist ftp traffic between SCAN_NMAP_TCP2 and Rsh3.

An Example

- There doesn’t exist ftp traffic between SCAN_NMAP_TCP2 and Rsh3.
Consolidate Hypothesized Attacks

- One missed attack may be hypothesized multiple times through different related alerts
- There may have been multiple instances of the missed attack, but
 - Introduce complexity into analysis

```plaintext
Sadmind_Ping1 ----> Sadmind_BufferOverflow4 ----> Rsh2
Sadmind_BufferOverflow5 ----> Rsh3
```

Consolidate Hypothesized Attacks (Cont’d)

- Consolidate two hypothesized attacks, if they possibly refer to the same attack
 - They have the same type
 - Their inferred attribute values do not conflict
 - The ranges of their timestamps overlap

```plaintext
Sadmind_Ping1 ----> Sadmind_BufferOverflow4 ----> Rsh2
Sadmind_BufferOverflow5 ----> Rsh3
```
Experiments

- Data Set
 - 2000 DARPA ID evaluation dataset: LLDOS 1.0
- IDS
 - ISS RealSecure Network Sensor 6.0
- Clustering
 - Same destination IP address
- Causal correlation
 - NCSU Intrusion Alert Correlator (Version 0.2)
- Network audit data process
 - Ethereal 0.9.14
- Type graph
 - All attacks detected by the IDS
- Drop all Sadmind_Amslverify_Overflow alerts
Conclusion and Future Work

- Integrates two complementary intrusion alert correlation methods
- Build attack scenarios based on type graphs and (indirect) equality constraints:
 - Hypothesize and reason about missed attacks
 - Infer about attack attribute values
 - Validate and consolidate hypothesized attacks
- Future Work
 - Additional techniques to validate and reason about hypothesized attacks
 - Large scale experiments
 - Quantitative evaluation