CSC 774 Network Security

Topic 9.1 Key Predistribution in Wireless Sensor Networks (2)

Outline

• Background
 – Polynomial based key predistribution
• A framework for key predistribution in sensor networks
 – Polynomial pool based key predistribution
• Two efficient key predistribution schemes
 – Random subset assignment
 – Grid based key predistribution
• Efficient implementation in sensor networks
• Conclusion and future work
Polynomial Based Key Predistribution

• By Blundo et al. [CRYPTO ‘92]
 – Developed for group key predistribution
 – We consider the special case of pairwise key predistribution

• Predistribution:
 – The setup server randomly generates \(f(x, y) = \sum_{i,j=0}^{t} a_{ij} x^i y^j \),
 where \(f(x,y) = f(y, x) \)
 – Each sensor \(i \) is given a polynomial share \(f(i, y) \)

• Key establishment:
 – Node \(i \) computes \(f(i, y = j) = f(i, j) \)
 – Node \(j \) computes \(f(j, y = i) = f(j, i) = f(i, j) \)

Polynomial Based Key Predistribution (Cont’d)

• Security properties (by Blundo et al.)
 – Unconditionally secure for up to \(t \) compromised nodes

• Performance
 – Storage overhead at sensors: \((t+1)\log q \) bits
 – Computational overhead at sensors: \(t \) modular multiplications and \(t \) modular additions
 – No communication overhead

• Limitation
 – Insecure when more than \(t \) sensors are compromised
 – An invitation for node compromise attacks
Polynomial Pool Based Key Predistribution

- A general framework for key predistribution based on bivariate polynomials
 - Let us use multiple polynomials
 - A pool of randomly generated bivariate polynomials
- Two special cases
 - One polynomial in the polynomial pool
 - Polynomial based key predistribution
 - All polynomials are 0-degree ones
 - Key pool by Eschenauer and Gligor

Polynomial Pool Based Key Predistribution (Cont’d)

- Phase 1: Setup
 - Randomly generates a set \(F \) of bivariate \(t \)-degree polynomials
 - Subset assignment: Assign a subset of polynomials in \(F \) to each sensor

A subset: \(\{f(i, y), \ldots, f_k(i, y)\} \)

Random polynomial pool \(F \)
Polynomial Pool Based Key Predistribution (Cont’d)

• Phase 2: Direct Key Establishment
 – **Polynomial share discovery**: Communicating sensors discover if they share a common polynomial
 • Pairwise keys can be derived if they share a common polynomial.
 – Two approaches:
 • **Predistribution**:
 – Given predistributed information, a sensor can decide if it can establish a direct pairwise key with another sensor.
 • **Real-time discovery**:
 – Sensors discover on the fly if they can establish a direct pairwise key.

• Phase 3: Path Key Establishment
 – Establish pairwise keys through other sensors if two sensors cannot establish a common key directly
 – **Path discovery**
 • Node i finds a sequence of nodes between itself and node j such that two adjacent nodes can establish a key directly
 • Key path: the above sequence of nodes between i and j
 – Two approaches
 • **Predistribution**
 – Node i can find a key path to node j based on predistributed information
 • **Real-time discovery**
 – Node i discover a key path to node j on the fly
Random Subset Assignment Scheme

- An instantiation of the polynomial pool-based key predistribution.
- Subset assignment: random

A random subset: \(\{ f(i, y)_j, \ldots, f(i, y)_k \} \)

Random polynomial pool \(F \)

Random Subset Assignment (Cont’d)

- Polynomial share discovery
 - Real-time discovery

Broadcast IDs in clear text. Broadcast a list of challenges.
Random Subset Assignment (Cont’d)

- Path discovery
 - i and j use k as a KDC
 - Alternatively, i contacts nodes with which it shares a key; any node that also shares a key with j replies.
 - Each key path has 2 hops

![Diagram]

Probability of Sharing Direct Keys between Sensors

- s: polynomial pool size
- s': number of polynomial shares for each sensor
- p: probability of sharing a polynomial between two sensors
Probability of Sharing Keys between Sensors

- d: number of neighbors
- p: probability that two sensors share a polynomial
- p_s: probability of sharing a common key

Note: each key path is at most two hops

Dealing with Compromised Sensors

- Comparison with basic probability and q-composite schemes
 - Probability to establish direct keys $p = 0.33$
 - Each sensor has storage equivalent to 200 keys
Dealing with Compromised Sensors (Cont’d)

- Comparison with random pairwise keys scheme
 - Assume perfect security against node compromises
 - Each polynomial is used at most t times in our scheme
 - Each sensor has storage equivalent to 200 keys

Grid Based Key Predistribution

- Create a $m \times m$ grid
- Each row or column is assigned a polynomial
- Assign each sensor to an interaction
- Assign each sensor the polynomials for the row and the column of its intersection
 - Sensor ID: coordinate
- There are multiple ways for any two sensors to establish a pairwise key
Grid Based Key Predistribution (Cont’d)

• Order of node assignment

Grid Based Key Predistribution (Cont’d)

• Polynomial share discovery
 – No communication overhead

Same column

Same row
Grid Key Predistribution (Cont’d)

• Path discovery
 – Real-time discovery
 – Paths with one intermediate node
 – Paths with two intermediate nodes
 – They know who to contact!

Properties

1. Any two sensors can establish a pairwise key when there is no compromised node;
2. Even if some sensors are compromised, there is still a high probability to establish a pairwise key between non-compromised sensors;
3. A sensor can directly determine whether it can establish a pairwise key with another node.
Dealing with Compromised Sensors

- Comparison with basic probabilistic scheme, q-composite scheme, and random subset assignment scheme
 - Assume each sensor has storage equivalent to 200 keys

Dealing with Compromised Sensors (Cont’d)

- Probability to establish pairwise keys when there are compromised sensors
 - d: number of non-compromised sensors to contact
 - Assume each sensor has storage equivalent to 200 keys
Implementation

- Observations
 - Sensor IDs are chosen from a field much smaller than cryptographic keys
 - Field for cryptographic keys: F_q
 - Field for sensor IDs: $F_{q'}$
 - Special fields: $q' = 2^{16}+1, q' = 2^{8}+1$
 - No division operation is needed for modular multiplications

- Implementation (Cont’d)

 - **Lemma 1.** In this implementation, the entropy of the key for a coalition of no more than t other sensors is
 \[r \cdot \left[\log_2 q' - (2 - \frac{2^{l+1}}{q'}) \right] \]
 where $l = \lfloor \log_2 q' \rfloor$ and $r = \left\lceil \frac{n}{l} \right\rceil$.

 - Examples
 - 64 bit keys
 - When $q' = 2^{16}+1$, the above entropy is 63.9997 bits
 - When $q' = 2^{8}+1$, the above entropy is 63.983 bits