CSC 774 Advanced Network Security

Topic 2. Network Security Primitives

Outline

- Absolute basics
 - Encryption/Decryption; Digital signatures; D-H key exchange; Hash functions; Pseudo random functions; traditional key distribution techniques
- Primitives based on hash functions
 - One-way hash chain, Merkle hash tree, client puzzles, Bloom filters
- Zero-knowledge proof
- Secret sharing
- ID-based cryptography
- Secret handshake
- Rabin’s fingerprinting and information dispersal algorithms
Encryption/Decryption

- Plaintext: a message in its original form
- Ciphertext: a message in the transformed, unrecognized form
- Encryption: the process that transforms a plaintext into a ciphertext
- Decryption: the process that transforms a ciphertext to the corresponding plaintext
- Key: the value used to control encryption/decryption.
Cryptanalysis

- Ciphertext only:
 - Analyze only with the ciphertext
 - Example: Exhaustive search until “recognizable plaintext”
 - Smarter ways available
- Known plaintext:
 - Secret may be revealed (by spy, time), thus
 <ciphertext, plaintext> pair is obtained
 - Great for mono-alphabetic ciphers

Cryptanalysis (Cont’d)

- Chosen plaintext:
 - Choose text, get encrypted
 - Useful if limited set of messages
- Chosen ciphertext:
 - Choose ciphertext
 - Get feedback from decryption, etc.
Secret Key Cryptography

- Same key is used for encryption and decryption
- Also known as
 - Symmetric cryptography
 - Conventional cryptography

Secret Key Cryptography (cont’d)

- Basic technique (block cipher)
 - Product cipher:
 - Multiple applications of interleaved substitutions and permutations

plaintext → \[
\begin{array}{c}
\text{S} \\
\text{P} \\
\text{S} \\
\text{P} \\
\vdots \\
\text{S}
\end{array}
\]
ciphertext

key
Secret Key Cryptography (cont’d)

• Basic technique (stream cipher)

 key
 ↓
 Pseudo random number generator → 001010100101001110011…
 Bitwise ⊕

 plaintext 101011101101001110011…
 ↓
 ciphertext 100010010000000000000…

• Cipher-text approximately the same length as plaintext

 • Examples
 – Stream Cipher: RC4
 – Block Cipher: DES, IDEA, AES
Public Key Cryptography

- Invented/published in 1975
- A public/private key pair is used
 - Public key can be publicly known
 - Private key is kept secret by the owner of the key
- Much slower than secret key cryptography
- Also known as
 - Asymmetric cryptography

Public Key Cryptography (Cont’d)

- Another mode: digital signature
 - Only the party with the private key can create a digital signature.
 - The digital signature is verifiable by anyone who knows the public key.
 - The signer cannot deny that he/she has done so.
Public Key Cryptography (Cont’d)

- Example algorithms
 - RSA
 - DSA
 - Diffie-Hellman

Digital Signature Algorithm (DSA)

- Generate public parameters
 - \(p \) (512 to 1024 bit prime)
 - \(q \) (160 bit prime): \(q | p - 1 \)
 - \(g = h^{(p - 1)/q} \) mod \(p \), where \(1 < h < (p - 1) \) such that \(g > 1 \).
 - \(g \) is of order \(q \) mod \(p \).
- User’s private key \(x \)
 - Random integer with \(0 < x < q \)
- User’s public key \(y \)
 - \(y = g^x \) mod \(p \)
- User’s per message secret number
 - \(k \) = random integer with \(0 < k < q \).
DSA (Cont’d)

• Signing
 – \(r = (g^k \mod p) \mod q \)
 – \(s = [k^{-1}(H(M)+xr)] \mod q \)
 – Signature = \((r, s)\)

• Verifying
 – \(M’, r’, s’ = \) received versions of \(M, r, s \).
 – \(w = (s’)^{-1} \mod q \)
 – \(u_1 = [H(M’)w] \mod q \)
 – \(u_2 = (r’)w \mod q \)
 – \(v = [(g^{u_1}y^{u_2}) \mod p] \mod q \)
 – if \(v = r’ \) then the signature is verified

Hash Algorithms

Message of arbitrary length \(\xrightarrow{\text{Hash } H} \) A fixed-length short message

• Also known as
 – Message digests
 – One-way transformations
 – One-way functions
 – Hash functions

• Length of \(H(m) \) much shorter then length of \(m \)
• Usually fixed lengths: 128 or 160 bits
Hash Algorithms (Cont’d)

- Desirable properties of hash functions
 - **Performance**: Easy to compute $H(m)$
 - **One-way property**: Given $H(m)$ but not m, it is computationally infeasible to find m
 - **Weak collision free**: Given $H(m)$, it is computationally infeasible to find m' such that $H(m') = H(m)$.
 - **Strong collision free**: Computationally infeasible to find m_1, m_2 such that $H(m_1) = H(m_2)$

- Example algorithms
 - MD5
 - SHA-1
 - SHA-256

Applications of Hash Functions

- Primary application
 - Generate/verify digital signature

 Message m $\xrightarrow{}$ H $\xrightarrow{}$ $H(m)$ $\xrightarrow{}$ Sign $\xrightarrow{}$ Signature $\text{Sig}(H(m))$

 Private key

 Message m $\xrightarrow{}$ H $\xrightarrow{}$ $H(m)$ $\xrightarrow{}$ Verify $\xrightarrow{}$ Yes/No

 Public key

 Signature $\text{Sig}(H(m))$
Applications of Hash Functions (Cont’d)

• Password hashing
 – Doesn’t need to know password to verify it
 – Store $H(password + salt)$ and salt, and compare it with the user-entered password
 – Salt makes dictionary attack more difficult

• Message integrity
 – Agree on a secret key k
 – Compute $H(m|k)$ and send with m
 – Doesn’t require encryption algorithm, so the technology is exportable

Applications of Hash Functions (Cont’d)

• Authentication
 – Give $H(m)$ as an authentication token
 – Later release m
Pseudo Random Generator

• Definition
 – A cryptographically secure pseudorandom bit generator is an efficient algorithm that will expand a random \(n \)-bit seed to a longer sequence that is computationally indistinguishable from a truly random sequence.

• Theorem [Levin]
 – A one-way function can be used to construct a cryptographically secure pseudo-random bit generator.

Pseudo Random Functions

• Definition
 – A cryptographically secure pseudorandom function is an efficient algorithm that
 • given an \(n \)-bit seed \(s \), and
 • an \(n \)-bit argument \(x \),
 • returns an \(n \)-bit string \(f_s(x) \)
 • such that it is infeasible to distinguish \(f_s(x) \) for random seed \(s \) from a truly random function.

• Theorem [Goldreich, Goldwasser, Micali]
 – Cryptographically secure pseudorandom functions can be constructed from cryptographically secure pseudorandom bit generators.
Key Agreement

- Establish a key between two or among multiple parties
 - Classical algorithm
 - Diffie-Hellman

Key Exchange

- Key exchange
 - Between two parties
 - A special case of key agreement
 - Use public key cryptography
 - Examples: RSA, DH
 - Use symmetric key cryptography
 - Usually requires a pre-shared key
Key Distribution

• Involves a (trusted) third party to help establish keys.
• Based on
 – Symmetric key cryptography, or
 – Public key cryptography

Center-Based Key Management

• Key Distribution Center (KDC)
 – Communication parties depend on KDC to establish a pair-wise key.
 – The KDC generates the cryptographic key
 – Pull based
 • Alice communicates with the KDC before she communicates with Bob
 – Push based
 • Alice communicates with Bob, and it’s Bob’s responsibility to contact the KDC to get the pair-wise key.
Center-Based Key Management (Cont’d)

- Key Translation Center (KTC)
 - Similar to KDC
 - Difference
 - One of the participants generates the cryptographic key
 - KTC only translates and forwards it to the other participant.

An Example of KDC: Kerberos

1. Request TGT
2. TGT + session key
3. Request SGT
4. Ticket + session key
5. Request service
6. Server authenticator

Keberos
Authentication Server (AS)
Ticket-Granting Server (TGS)
Server
When Public Key Cryptography is Used

- Need to authenticate public keys
- Public key certificate
 - Bind an identity and a public key together
 - Verify the authenticity of a party’s public key

Attacks

- Replay attacks
- Man-in-the-middle attacks
- Resource clogging attacks
- Denial of service attacks
- Meet-in-the-middle attacks
- Dictionary attacks
- Others specific to protocols