Basic Idea

• Use identity as the key for encryption and signature verification.
 – No key directory needed.
• Trusted key generation center (KGC)
 – Give each user a smart card when user first joins the network.
 – Each user uses the secret key in smart card for decryption and signature verification.
 – KGC can be closed after all cards are issued.
Security

- The security of underlying cryptographic functions.
- The secrecy at KGC.
- Identity check before issuing cards to users.
- The loss, duplication and unauthorized use of cards.

Implementation of Signature Scheme

- KGC chooses three public parameters. The factorization of n is only known by KGC.
 - $n=p\cdot q$, p and q are large primes
 - e, which is relatively prime to $\varphi(n)$
 - f, which is one way function
- The secret key corresponding identity i is g
 - $g^e = i \pmod{n}$
 - KGC can compute g easily. Why?
 $$ed \equiv 1 \pmod{\varphi(n)}$$
 $$i^d = (g^e)^d \pmod{n} = g$$
Signature Generation and Verification

- Signature generation
 1. Choose random number r
 2. $t = r^e \pmod{n}$
 3. $s = g \cdot r^{f(t,m)} \pmod{n}$
 4. Signature is (t, s)

- Signature verification
 $s^e = i \cdot t^{f(t,m)} \pmod{n}$
 $s^e = g^e \cdot r^e \cdot f(t,m) \pmod{n}$

Misc

- Multiplicative relationship between the identities will introduce same relationship between secret key.
 - Expand identity to pseudo-random string

- r cannot be reused or revealed