Topic 3.1: NetBill

Outline

• Why is NetBill developed?
• NetBill Transaction Model
• NetBill Transaction Protocol
 – Basic Protocol
 – Optimizations for zero-priced goods
• Failure Analysis
E-Commerce over the Internet

- Internet is attractive for e-commerce
 - Search for suppliers
 - Price negotiation
 - Ordering
 - Payment for goods
 - Delivery of information goods
 - Software, electronic books, etc.

- Challenges
 - No easily identifiable places of business
 - Transactions are subject to observation by their parties
 - Privacy

NetBill

- NetBill is a system developed to facilitate selling and delivery of low-priced information goods over the Internet.
 - Maintain accounts for customers as well as merchants, which are linked to banks
 - Transfer information goods from merchant to customer
 - Transfer money from customer’s account to merchant’s account.
 - Combine small transactions into larger conventional transactions, reducing transaction cost.
NetBill Transaction Model

- Three phases
 - Phase 1: Price negotiation
 - Phase 2: Goods delivery
 - Phase 3: Payment

NetBill Transaction Objectives

- Only authorized customers can charge against a NetBill account
- The customer and merchant must agree on the purchase item and the price
- A customer can optionally protect her identity from merchants
- Customers and merchants are provided with proof of transaction results from NetBill
- There is a negotiation phase between customer and merchant
- A customer may present credentials identifying her for special treatment
- A customer receives the goods if and only if she is charged for the goods
- A customer may need approval from a fourth party before the NetBill server will allow a transaction.
- The privacy and integrity of communications is protected from observation or alteration by external parties.
NetBill Transaction Protocol

- The basic protocol
 - Phase 1: price negotiation
 - $C \Rightarrow M$: price request
 - $M \Rightarrow C$: price quote
 - Phase 2: goods delivery
 - $C \Rightarrow M$: goods request
 - $M \Rightarrow C$: goods, encrypted with a key K
 - Phase 3: payment
 - $C \Rightarrow M$: signed electronic payment order (EPO)
 - $M \Rightarrow N$: endorsed EPO (including K)
 - $N \Rightarrow M$: signed result (including K)
 - $M \Rightarrow C$: signed result (including K)

Notations

- $T_{XY}(Id)$: Kerberos ticket proving to Y that X is named by Id, and establish a session key XY shared between them.
- $CC(M)$: cryptographic checksum of M.
- $E_k(M)$: M encrypted using key K.
- $E_{X-PUB}(M)$: M encrypted using X’s RSA public key.
- $E_{X-PRI}(M)$: M signed using X’s RSA private key.
- $[M]_X$: M signed (with RSA) and timestamped by X.
- $[M]_{X-DSA}$: M signed and timestamped by X with DSA.
- $\{M\}^X$: M encrypted for X using RSA.
The Price Request Phase

1. \(\text{C} \Rightarrow \text{M}: T_{CM}(Id), E_{CM}(\text{Credentials, PRD, Bid, RequestFlags, TID}) \)
2. \(\text{M} \Rightarrow \text{C}: E_{CM}(\text{ProductID, Price, RequestFlags, TID}) \)

- \(T_{CM}(Id) \): prove the identity of the customer
- \(\text{Credentials} \): establish the customer’s membership
- \(\text{PRD} \): product description
- \(\text{RequestFlags} \):
 - Message 1: request for the disposition of the transaction (e.g., Delivery method)
 - Message 2: merchant’s response to customer’s request
- \(\text{TID} \):
 - Message 1: if this is a repeated request
 - Message 2: if this is not supplied by the customer

The Goods Delivery Phase

3. \(\text{C} \Rightarrow \text{M}: T_{CM}(Id), E_{CM}(\text{TID}) \)
4. \(\text{M} \Rightarrow \text{C}: E_{K}(\text{Goods}), E_{CM}(\text{CC}(E_{K}(\text{Goods})), \text{EPOID}) \)

- \(\text{M} \) sends to \(\text{C} \)
 - An encrypted version of the goods
 - The cryptographic checksum of the encrypted goods
 - \(\text{EPOID} \): electronic purchase order ID.
 - Merchant ID + a timestamp (delivery time) + a serial number
- \(\text{Intuition} \):
 - Reduce the transaction to a fair exchange of \(K \) and the payment from \(\text{C} \).
 - This fair exchange depends on the NetBill server.
The Payment Phase

5. $C \Rightarrow M: T_{CM}(Id), E_{CM}([EPO]_C)$

• EPO consists of
 – Clear part:
 • C’s ID, Product ID, Price, M’s ID
 • CC(E$_K$(Goods)), CC(PRD), CC(CAacct, AcctVN)
 • EPOID
 – Encrypted part:
 • T_{CN}(TrueID)
 • E_{CN}(Authorization, CAacct, AcctVN, Cmemo)

The Payment Phase (Cont’d)

6. $M \Rightarrow N: T_{MN}(M), E_{MN}([EPO]_C, MAacct, MMemo, K)_M$

• The merchant endorse and submit the EPO
 – MAacct: Merchant’s NetBill account
 – MMemo: merchant’s memo field
 – K: the key used to deliver the goods
• Point of no return
 – The merchant cannot reverse the transaction.
The Payment Phase (Cont’d)

7. \(N \Rightarrow M: E_{MN}([\text{Receipt}]_{N-DSA}, E_{CN}(\text{EPOID, CAcct, Bal, Flags})) \)

- The NetBill server makes decision based on verification of
 - The signatures
 - Privileges of the users involved
 - Customer’s account balance
 - Uniqueness and freshness of the EPOID

- Receipt
 - Result, Identity, Price, ProductID, M, K, EPOID
 - The signed receipt certifies the transaction

The Payment Phase (Cont’d)

8. \(M \Rightarrow C: E_{CM}([\text{Receipt}]_{N-DSA}, E_{CN}(\text{EPOID, CAcct, Bal, Flags})) \)

- Merchant forwards NetBill server’s response to customer
 - \(M \) needs to decrypt and re-encrypt
Status Query Exchange

- Needed when there is communication failure

The merchant requests the transaction status from NetBill

1. M ⇒ N: T_{MN}(M), E_{MN}(EPOID)
2. N ⇒ M: E_{MN}([Receipt]_{N-DSA}, E_{CN}(EPOID, CAcct, Bal, Flags))

The customer requests the transaction status from the merchant

1. C ⇒ M: T_{CM}(Id), E_{CM}(EPOID)
2. M ⇒ C: E_{CM}([Receipt]_{N-DSA}, E_{CN}(EPOID, CAcct, Bal, Flags))

Status Query Exchange (Cont’d)

The customer requests the transaction status from NetBill

1. C ⇒ N: T_{CN}(TrueId), E_{CN}(EPOID)
2. N ⇒ C: E_{CN}([Receipt]_{N-DSA}, E_{CN}(EPOID, CAcct, Bal, Flags))

The customer requests the transaction status from the merchant for a non-NetBill transaction

1. C ⇒ M: T_{CM}(Id), E_{CM}(EPOID)
2. M ⇒ C: E_{CM}(Result, K)
Zero-Priced Goods

- Protocol can be simplified
- Four variations
 - Type indicated in RequestFlags in the price request message
 - Zero-price certified delivery
 - Certified delivery without NetBill server
 - Verified delivery
 - Unverified delivery

Zero-Price Certified Delivery

1. C \rightarrow M \quad T_{CM}(\text{Identity}), E_{CM}(\text{Credentials, PRD, Bid, RequestFlags, TID})

2/4. M \rightarrow C \quad E_{CM}(\text{ProductID, Price=0, RequestFlags, TID}), E_{K}(\text{Goods}), E_{CM}(\text{CC}, E_{K}(\text{Goods})), E_{POID})

5. C \rightarrow M \quad T_{CM}(\text{Identity}), E_{CM}(E_{POID}_{C})

6. M \rightarrow N \quad T_{MN}(M), E_{MN}([E_{POID}_{C}, MAcc, Memo, K_{M}])

7. N \rightarrow M \quad E_{MN}(\text{Receipt}_{N-DSA}, E_{CN}(E_{POID}, CAcc, Bal, Flags))

8. M \rightarrow C \quad E_{CM}(\text{Receipt}_{N-DSA}, E_{CN}(E_{POID}, CAcc, Bal, Flags))

Price negotiation can be omitted.

But delivery must be certified by NetBill.
Certified Delivery without NetBill

1. \(C \Rightarrow M \) \(T_{CM}(Identity), E_{CM}(Credentials, PRD, Bid, RequestFlags, TID) \)
2/4. \(M \Rightarrow C \) \(E_{CM}(ProductID, Price(=0), RequestFlags, TID), E_K(Goods), ECM(CC(E_K(Goods)), EPOID) \)
5. \(C \Rightarrow M \) \(T_{CM}(Identity), E_{CM}(EPOID, CC(E_K(Goods))) \)
8. \(M \Rightarrow C \) \(E_{CM}(Result, K) \)

- No need to go through NetBill.
- But \(C \) cannot recover if \(M \) decides not to send message 8.

Verified Delivery

1. \(C \Rightarrow M \) \(T_{CM}(Identity), E_{CM}(Credentials, PRD, Bid, RequestFlags, TID) \)
2/4. \(M \Rightarrow C \) \(E_{CM}(ProductID, Price(=0), RequestFlags, TID, Goods, CC(Goods), EPOID) \)
5. \(C \Rightarrow M \) \(T_{CM}(Identity), E_{CM}(EPOID, CC(Goods)) \)
8. \(M \Rightarrow C \) \(E_{CM}(Result) \)

- Goods is encrypted with shared session key.
- \(C \) doesn’t have to wait for \(K \).
Unverified Delivery

1. \(C \rightarrow M \) \(T_{CM}(\text{Identity}), E_{CM}(\text{Credentials, PRD, Bid, RequestFlags, TID}) \)

2/4. \(M \rightarrow C \) \(E_{CM}(\text{ProductID, Price(=0), RequestFlags, TID, Goods, CC(Goods)}) \)

- Eliminate the acknowledgement of goods delivery.

Failure Analysis

- Customer complaints
 - Incorrect or damaged goods
 - Can be resolved with the EPO, which contains a cryptographic checksum of the encrypted goods
 - Cannot deal with false advertisement
 - No decryption key
 - Can be resolved by a status query exchange with the NetBill server
Failure Analysis (Cont’d)

• Transaction dispute
 – Inconsistent price
 • Can be resolved by checking the EPO signed by the customer
 – Fraudulent transactions
 • Same resolution as above.

Failure Analysis (Cont’d)

• Merchant Complaints
 – Insufficient payment
 • Can be resolved by checking the receipt signed by NetBill
Identification and Authentication

- Public key based Kerberos
 - Each entity has public/private key pair with a certificate for the public key
 - Public key certificate is used to obtain a Kerberos server ticket

1. $C \Rightarrow M \ [\{\text{Identity, M, Timestamp, K}\}^M_C$
2. $M \Rightarrow C \ E_K(T_{CM}(\text{Identity}, \text{CM})$

Privacy protection

- Pseudonym mechanism
 - Implemented through a pseudonym-granting server P
 - Two methods
 - Per transaction
 - Use a unique pseudonym for each transaction
 - Per merchant
 - Use a unique pseudonym for each customer-merchant pair
Authorization

1. \(C \Rightarrow A \) \(T_{CA}(\text{Identity}), E_{CA}(M, \text{ProductID}, \text{Price}, CC(E_K(\text{Goods})), \text{EPOID}, \text{CAcct}) \)

2. \(A \Rightarrow C \) \(E_{CA}(E_{A-PRJ}(CC(\text{Identity}, M, \text{ProductID}, \text{Price}, CC(E_K(\text{Goods})), \text{EPOID}, \text{CAcct}))) \)

- Performed through an access control server A.
 - Message returned by A is used as the authorization token in an EPO.