Topic 3.2: Micro Payments

Outline

- Micropayment systems
 - Make small purchase over the Internet
- Two simple micropayment schemes
 - PayWord
 - MicroMint
PayWord and MicroMint

- Main goal
 - Minimize the number of public key operations
 - Use hash operations instead whenever possible
 - Hash functions are
 - 100 times faster than RSA signature verification
 - 10,000 times faster than RSA signature generation

Broker authorize
User

Vendor redeem
pay

PayWord

- Overview
 - Credit based scheme
 - Based on chains of paywords (hash values)
 - Broker gives a certificate to user to allow him/her to make paywords
 - User authenticates a complete chain to the vendor with a single public-key signature
 - User successively reveals each payword in the chain to make micropayment
 - Vendor gets money through broker.
PayWord (Cont’d)

- **User-Broker relationship**
 - User U establishes an account with broker B
 - Credit card number, expiration date, etc.
 - Broker B gives user U a certificate
 - Expiration date
 - Credit limit per vendor
 - Contact information of broker B
 - …
 - The certificate:
 - B will redeem authentic paywords produced by U turned in before the given expiration date.
 - Essentially allows U to produce paywords.

PayWord (Cont’d)

- **User-Vendor relationships**
 - Randomly choose w_n, and compute the paywords
 - User U sends Vender V her commitment
 \[M = \{ V, C_U, w_0, D, I_M \}^{SK_U} \]
 - Commitment is vendor-specific and user-specific

\[h: \text{one-way hash function} \]

- $w_0 \overset{h}{\rightarrow} w_1 \overset{h}{\rightarrow} w_2 \overset{h}{\rightarrow} \ldots \overset{h}{\rightarrow} w_n \]
PayWord (Cont’d)

• Payment
 – A payment P from U to V
 – P = (w_p, i)
 – U spends her paywords in order
 – Variable-size payment
 • Example: U has just paid (w_3, 3). What should U send to V if she wants to pay 3 more cents?
 • (_____, _____)

PayWord (Cont’d)

• Vendor-Broker relationship
 – For each User U, Vender V needs to send Broker B
 • The commitment M
 • The last payment P=(w_p, l) received from U
 – Broker verifies M and each payment P=(w_p, l)
 – Questions:
 • What’s the cost of verifying P=(w_p, l) ?
 – ____________________
 • What property(ies) of the hash function is used in PayWord?
 – ____________________
MicroMint

- Overview
 - No public key operations
 - For unrelated low-value payments
 - Broker produces MicroMint coins
 - A coin is a bit string whose validity can be checked by anyone
 - Users purchase the coins
 - Users give the coins to vendors as payments
 - Vendors return coins to broker in turn for payments by other means.

MicroMint (Cont’d)

- Coins
 - Each coin is represented by a k-way collision that has distinct \(x_i \)'s.
 - The number of \(x \)-values that must be examined before one expects to see the first k-way collision is approximately
 \[2^{n(k-1)/k} \]
 where \(n \) is the number of bits in \(y \).

\[(x_1, x_2, \ldots, x_k): \text{k-way collision} \]

\[h(x_1)=h(x_2)=\ldots=h(x_k)=y \]
MicroMint (Cont’d)

- Minting coins
 - Equivalent to throwing balls into 2^n bins
 - Randomly select x, and compute $y = h(x)$.
 - Throw approximately $k \times 2^n$ balls
 - Roughly $1/2$ of the bins have at least k balls.

- Question: If there are more than k x’s in the same bin, can we make more than one coin out of it?
 - Balance computational and storage requirements
 - Good coins: a coin is good only when the high-order t bits are equal to a given value.
 - Reduce the storage requirements
 - Slow down the generation process
 - Tosses $k \times 2^n$ balls, but get $(1/2)\times 2^{(n-t)}$ coins.
MicroMint (Cont’d)

• Selling coins
 – Broker B remembers what coins User U gets
• Making payments
 – Vendor V can verify each coin
• Redemption
 – Vendor returns the coins to the broker
 – Broker checks coins and pays the vendor
 • Only pay for coins that have not been previously returned.

MicroMint (Cont’d)

• Double spending
 – Broker can detect doubly-spent coin
 – Broker can identify from which vendors he received such coins
 – Broker can link the doubly-spent coins with each user